scispace - formally typeset
Journal ArticleDOI

Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries

TLDR
H hierarchical three-dimensional ZnCo(2)O(4) nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity, excellent cycling ability, and superior electrochemical performances.
Abstract
Flexible electronics is an emerging and promising technology for next generation of optoelectronic devices. Herein, hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth composites were synthesized as high performance binder-free anodes for Li-ion battery with the features of high reversible capacity of 1300–1400 mAh g–1 and excellent cycling ability even after 160 cycles with a capacity of 1200 mAh g–1. Highly flexible full batteries were also fabricated, exhibiting high flexibility, excellent electrical stability, and superior electrochemical performances.

read more

Citations
More filters
Journal ArticleDOI

Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage

TL;DR: Recent advances in strategies for advanced metal oxide-based hybrid nanostructure design are reviewed, with the focus on the binder-free film/array electrodes that can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance.
Journal ArticleDOI

Mixed transition-metal oxides: design, synthesis, and energy-related applications.

TL;DR: Recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures are summarized, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells.
Journal ArticleDOI

Progress in flexible lithium batteries and future prospects

TL;DR: In this paper, the authors summarized the recent research progress of flexible lithium-ion batteries, with special emphasis on electrode material selectivity and battery structural design, and discussed the prospects and challenges toward the practical uses of flexible batteries in electronic devices.
Journal ArticleDOI

Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor

TL;DR: A supercapacitor electrode composed of well-aligned CoO nanowire array grown on 3D nickel foam with polypyrrole (PPy) uniformly immobilized onto or firmly anchored to each nanowires surface to boost the pseudocapacitive performance.
References
More filters
Journal ArticleDOI

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries

TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Journal ArticleDOI

Materials and mechanics for stretchable electronics

TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Journal ArticleDOI

Functional nanoscale electronic devices assembled using silicon nanowire building blocks.

TL;DR: The facile assembly of key electronic device elements from well-defined nanoscale building blocks may represent a step toward a "bottom-up" paradigm for electronics manufacturing.
Journal ArticleDOI

High Performance Silicon Nanowire Field Effect Transistors

TL;DR: In this article, the influence of source-drain contact thermal annealing and surface passivation on key transistor properties was examined, and it was shown that thermal annaling and passivation of oxide defects using chemical modification can increase the average transconductance from 45 to 800 nS and average mobility from 30 to 560 cm 2 /V
Related Papers (5)