scispace - formally typeset
Open AccessJournal ArticleDOI

Hierarchically ordered oxides

Reads0
Chats0
TLDR
Porous silica, niobia, and titania with three-dimensional structures patterned over multiple length scales were prepared by combining micromolding, polystyrene sphere templating, and cooperative assembly of inorganic sol-gel species with amphiphilic triblock copolymers.
Abstract
Porous silica, niobia, and titania with three-dimensional structures patterned over multiple length scales were prepared by combining micromolding, polystyrene sphere templating, and cooperative assembly of inorganic sol-gel species with amphiphilic triblock copolymers. The resulting materials show hierarchical ordering over several discrete and tunable length scales ranging from 10 nanometers to several micrometers. The respective ordered structures can be independently modified by choosing different mold patterns, latex spheres, and block copolymers. The examples presented demonstrate the compositional and structural diversities that are possible with this simple approach.

read more

Citations
More filters
Journal ArticleDOI

Rapid prototyping of patterned functional nanostructures

TL;DR: This work combines silica–surfactant self-assembly with three rapid printing procedures—pen lithography, ink-jet printing, and dip-coating of patterned self-assembled monolayers—to form functional, hierarchically organized structures in seconds.
Journal ArticleDOI

Mesoporous materials for clean energy technologies

TL;DR: The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area.
Journal ArticleDOI

Surface and Interface Engineering of Electrode Materials for Lithium‐Ion Batteries

TL;DR: Recent progress in surface and interface engineering of electrode materials including the increase in contact interface by decreasing the particle size or introducing porous or hierarchical structures and surface modification or functionalization by metal nanoparticles, metal oxides, carbon materials, polymers, and other ionic and electronic conductive species are reviewed.
Journal ArticleDOI

Review on nanoscale Bi-based photocatalysts

TL;DR: Recent topics in nanoscale Bi-based photocatalysts, including doping, changing stoichiometry, solid solutions, ultrathin nanosheets, hierarchical and hollow architectures, conventional heterojunctions, direct Z-scheme junctions, and surface modification of conductive materials and semiconductors, are reviewed.
Journal ArticleDOI

Colloidal crystals as templates for porous materials

TL;DR: A wide range of advanced materials have recently been synthesized by replicating the structure of colloidal crystals into durable solid matrices as discussed by the authors, such materials have promise as photonic crystals, catalysts and membranes, and in a variety of other applications.
References
More filters
Journal ArticleDOI

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism

TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Journal ArticleDOI

Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores

TL;DR: Use of amphiphilic triblock copolymers to direct the organization of polymerizing silica species has resulted in the preparation of well-ordered hexagonal mesoporous silica structures (SBA-15) with uniform pore sizes up to approximately 300 angstroms.
Journal ArticleDOI

Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks

TL;DR: In this article, a simple and versatile procedure for the synthesis of thermally stable, ordered, large-pore (up to 140 A) mesoporous metal oxides was described.
Journal ArticleDOI

Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids

TL;DR: The examples presented demonstrate the compositional diversity possible with this technique and could have applications in areas ranging from quantum electronics to photocatalysis to battery materials.
Related Papers (5)