scispace - formally typeset
Open AccessJournal ArticleDOI

High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue

TLDR
Two-probe and van der Pauw electrical measurements reveal bulk and surface conductivity values of 2 and 40 S·cm(-1), respectively, both records for MOFs and among the best for any coordination polymer.
Abstract
Reaction of 2,3,6,7,10,11-hexaaminotriphenylene with Ni2+ in aqueous NH3 solution under aerobic conditions produces Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a new two-dimensional metal–organic framework (MOF). The new material can be isolated as a highly conductive black powder or dark blue-violet films. Two-probe and van der Pauw electrical measurements reveal bulk (pellet) and surface (film) conductivity values of 2 and 40 S·cm–1, respectively, both records for MOFs and among the best for any coordination polymer.

read more

Content maybe subject to copyright    Report

Citations
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Conductive MOF electrodes for stable supercapacitors with high areal capacitance

TL;DR: This work shows that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC, the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders.
Journal ArticleDOI

Electrically Conductive Porous Metal–Organic Frameworks

TL;DR: This work reviews the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties and selected applications for this subclass of MOFs.
Journal ArticleDOI

Function-led design of new porous materials

TL;DR: How each application will limit the materials that can be used, and also the size and connectivity of the pores required, are reviewed to compare and contrast a growing range of porous materials that are finding increasing use in academic and industrial applications.
Journal ArticleDOI

Emerging Multifunctional Metal-Organic Framework Materials.

TL;DR: The bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Related Papers (5)