scispace - formally typeset
Journal ArticleDOI

Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours

Reads0
Chats0
TLDR
It is proposed that hypoxia provides a physiological selective pressure in tumours for the expansion of variants that have lost their apoptotic potential, and in particular for cells acquiring p53mutations.
Abstract
Apoptosis is a genetically encoded programme of cell death that can be activated under physiological conditions and may be an important safeguard against tumour development. Regions of low oxygen (hypoxia) and necrosis are common features of solid tumours. Here we report that hypoxia induces apoptosis in oncogenically transformed cells and that further genetic alterations, such as loss of the p53 tumour-suppressor gene or overexpression of the apoptosis-inhibitor protein Bcl-2, substantially reduce hypoxia-induced cell death. Hypoxia also selects for cells with defects in apoptosis, because small numbers of transformed cells lacking p53 overtake similar cells expressing wild-type p53 when treated with hypoxia. Furthermore, highly apoptotic regions strongly correlate with hypoxic regions in transplanted tumours expressing wild-type p53, whereas little apoptosis occurs in hypoxic regions of p53-deficient tumours. We propose that hypoxia provides a physiological selective pressure in tumours for the expansion of variants that have lost their apoptotic potential, and in particular for cells acquiring p53 mutations.

read more

Citations
More filters
Journal ArticleDOI

p53, the Cellular Gatekeeper for Growth and Division

TL;DR: The author regrets the lack of citations for many important observations mentioned in the text, but their omission is made necessary by restrictions in the preparation of review manuscripts.
Journal ArticleDOI

Targeting HIF-1 for cancer therapy

TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Journal ArticleDOI

Mechanisms of angiogenesis

TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Journal ArticleDOI

Hypoxia — a key regulatory factor in tumour growth

TL;DR: Cells undergo a variety of biological responses when placed in hypoxic conditions, including activation of signalling pathways that regulate proliferation, angiogenesis and death, and many elements of the hypoxia-response pathway are good candidates for therapeutic targeting.
Journal ArticleDOI

Why do cancers have high aerobic glycolysis

TL;DR: In this article, the authors propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions, which leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity.
References
More filters
Journal ArticleDOI

Apoptosis in the pathogenesis and treatment of disease

TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Journal ArticleDOI

Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death

TL;DR: It is demonstrated that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k) being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.
Journal Article

Mutations in the p53 Tumor Suppressor Gene: Clues to Cancer Etiology and Molecular Pathogenesis

TL;DR: The p53 tumor suppressor gene has become a paradigm in cancer research because it is commonly mutated in human cancer and the spectrum of p53 mutations in these cancers is providing clues to the etiology and molecular pathogenesis of neoplasia as discussed by the authors.
Journal ArticleDOI

p53-dependent apoptosis modulates the cytotoxicity of anticancer agents

TL;DR: It is demonstrated that an oncogene, specifically the adenovirus E1A gene, can sensitize fibroblasts to apoptosis induced by ionizing radiation, 5-fluorouracil, etoposide, and adriamycin, and the involvement of p53 in the apoptotic response suggests a mechanism whereby tumor cells can acquire cross-resistance to anticancer agents.
Journal ArticleDOI

Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific, and Long-Lasting Anti-Tumor Immunity

TL;DR: The results have important implications for the clinical use of genetically modified tumor cells as therapeutic cancer vaccines and the levels of anti-tumor immunity reported previously in cytokine gene transfer studies involving live, transduced cells could be achieved through the use of irradiated cells alone.
Related Papers (5)