scispace - formally typeset
Journal ArticleDOI

Impact of anesthetic agents on cerebrovascular physiology in children.

Elöd Z. Szabó, +2 more
- 01 Feb 2009 - 
- Vol. 19, Iss: 2, pp 108-118
TLDR
The understanding of the effects of anesthetic agents on the physiology of cerebral vasculature in the pediatric population has significantly increased in the past decade allowing a more rationale decision making in anesthesia management.
Abstract
care to children with neurologic pathologies. The cerebral physiology is influenced by the developmental stage of the child. The understanding of the effects of anesthetic agents on the physiology of cerebral vasculature in the pediatric population has significantly increased in the past decade allowing a more rationale decision making in anesthesia management. Although no single anesthetic technique can be recommended, sound knowledge of the principles of cerebral physiology and anesthetic neuropharmacology will facilitate the care of pediatric neurosurgical patients.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Propofol: a review of its role in pediatric anesthesia and sedation

TL;DR: There is no direct evidence in humans for propofol-induced neurotoxicity to the infant brain; however, current concerns of neuroapoptosis in developing brains induced by prop ofol persist and continue to be a focus of research.
Journal ArticleDOI

Near-infrared spectroscopy: exposing the dark (venous) side of the circulation.

TL;DR: Near‐infrared spectroscopy provides noninvasive continuous access to the venous side of regional circulations that can approximate organ‐specific and global measures to facilitate the detection of circulatory abnormalities and drive goal‐directed interventions to reduce end‐organ ischemic injury.
Journal ArticleDOI

Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice

TL;DR: The advantages of total intravenous anesthesia (TIVA) have emerged and driven change in practice as mentioned in this paper, and these advantages will justify why TIVA will supercede inhalational anesthesia in future pediatric anesthetic practice.

Benzodiazepine receptors mediate regional bloodflowchanges in theliving humanbrain

TL;DR: In this paper, the effects of a high affinity gamma-aminobutyric acid (GABA)-benzodiazepine-receptor agonist (lorazepam) and an antagonist (flumazenil) in humans, using H2(15)O positron-emission tomography were studied.
References
More filters
Journal ArticleDOI

Effects of midazolam and morphine on cerebral oxygenation and hemodynamics in ventilated premature infants.

TL;DR: Administration of midazolam and morphine in ventilated premature infants causes significant changes in cerebral oxygenation and hemodynamics, which might be harmful.
Journal ArticleDOI

Anesthetic-mediated protection/preconditioning during cerebral ischemia.

TL;DR: This review will focus on the putative protection/preconditioning that is afforded by anesthetics, their possible interaction with GABA(A) and glutamate receptors and two-pore potassium channels, and the interaction with inflammatory, apoptotic and underlying molecular pathways.
Journal ArticleDOI

Influence of equianaesthetic concentrations of nitrous oxide and isoflurane on regional cerebral blood flow, regional cerebral blood volume, and regional mean transit time in human volunteers

TL;DR: Comparison of the effects of nitrous oxide and isoflurane on regional cerebral blood flow, cerebral blood volume, and regional mean transit time in spontaneously breathing human volunteers concluded thatNitrous oxide increases rCBF and rCBV predominantly in supratentorial grey matter, whereas isofLurane increases r CBF andrCBV mainly in infratentorialgrey matter.

Benzodiazepine receptors mediate regional bloodflowchanges in theliving humanbrain

TL;DR: In this paper, the effects of a high affinity gamma-aminobutyric acid (GABA)-benzodiazepine-receptor agonist (lorazepam) and an antagonist (flumazenil) in humans, using H2(15)O positron-emission tomography were studied.
Journal ArticleDOI

Benzodiazepine receptors mediate regional blood flow changes in the living human brain

TL;DR: The approach described here provides a method for quantifying GABA-benzodiazepine-receptor-mediated neurotransmission in the living human brain and may be useful for studying the role of these receptors in a variety of neuropsychiatric disorders.