scispace - formally typeset
Journal ArticleDOI

In silico toxicity as a tool for harm reduction: A study of new psychoactive amphetamines and cathinones in the context of criminal science.

01 May 2019-Science & Justice (Elsevier)-Vol. 59, Iss: 3, pp 234-247

...read more


Citations
More filters

References
More filters
Journal ArticleDOI

[...]

TL;DR: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described in this article, where the rule of 5 is used to predict poor absorption or permeability when there are more than 5 H-bond donors, 10 Hbond acceptors, and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415).
Abstract: Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described In the discovery setting 'the rule of 5' predicts that poor absorption or permeation is more likely when there are more than 5 H-bond donors, 10 H-bond acceptors, the molecular weight (MWT) is greater than 500 and the calculated Log P (CLogP) is greater than 5 (or MlogP > 415) Computational methodology for the rule-based Moriguchi Log P (MLogP) calculation is described Turbidimetric solubility measurement is described and applied to known drugs High throughput screening (HTS) leads tend to have higher MWT and Log P and lower turbidimetric solubility than leads in the pre-HTS era In the development setting, solubility calculations focus on exact value prediction and are difficult because of polymorphism Recent work on linear free energy relationships and Log P approaches are critically reviewed Useful predictions are possible in closely related analog series when coupled with experimental thermodynamic solubility measurements

12,161 citations

Journal ArticleDOI

[...]

TL;DR: PLS-regression (PLSR) as mentioned in this paper is the PLS approach in its simplest, and in chemistry and technology, most used form (two-block predictive PLS) is a method for relating two data matrices, X and Y, by a linear multivariate model.
Abstract: PLS-regression (PLSR) is the PLS approach in its simplest, and in chemistry and technology, most used form (two-block predictive PLS). PLSR is a method for relating two data matrices, X and Y, by a linear multivariate model, but goes beyond traditional regression in that it models also the structure of X and Y. PLSR derives its usefulness from its ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. PLSR has the desirable property that the precision of the model parameters improves with the increasing number of relevant variables and observations.This article reviews PLSR as it has developed to become a standard tool in chemometrics and used in chemistry and engineering. The underlying model and its assumptions are discussed, and commonly used diagnostics are reviewed together with the interpretation of resulting parameters.Two examples are used as illustrations: First, a Quantitative Structure-Activity Relationship (QSAR)/Quantitative Structure-Property Relationship (QSPR) data set of peptides is used to outline how to develop, interpret and refine a PLSR model. Second, a data set from the manufacturing of recycled paper is analyzed to illustrate time series modelling of process data by means of PLSR and time-lagged X-variables.

6,876 citations

Journal ArticleDOI

[...]

TL;DR: This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years and significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions.
Abstract: DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year's update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.

2,626 citations

Journal ArticleDOI

[...]

TL;DR: DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed drug data with comprehensive drug target information and is fully searchable supporting extensive text, sequence, chemical structure and relational query searches.
Abstract: DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed drug (i.e. chemical) data with comprehensive drug target (i.e. protein) information. The database contains .4100 drug entries including .800 FDA approved small molecule and biotech drugs as well as .3200 experimental drugs. Additionally, .14 000 protein or drug target sequences are linked to these drug entries. Each DrugCard entry contains .80 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data. Many data fields are hyperlinked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and GenBank) and a variety of structure viewing applets. The database is fully searchable supporting extensive text, sequence, chemical structure and relational query searches. Potential applications of DrugBank include in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. DrugBank is available at http:// redpoll.pharmacy.ualberta.ca/drugbank/.

2,580 citations

Journal ArticleDOI

[...]

TL;DR: The new SwissADME web tool is presented that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar are presented.
Abstract: To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.

2,561 citations