scispace - formally typeset
Open AccessJournal ArticleDOI

In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells

Reads0
Chats0
TLDR
In this paper, a 2D-3D perovskite stacking-layered architecture was designed by in situ growing 2D PEA(2)PbI(4) capping layers on top of 3D PbI film, which drastically improved the stability of PSCs without compromising their high performance.
Abstract
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden-Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D-3D perovskite stacking-layered architecture by in situ growing 2D PEA(2)PbI(4) capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi-level splitting in the 2D-3D perovskite film under light illumination, resulting in an enhanced open-circuit voltage (V-oc) and thus a higher efficiency of 18.51% in the 2D-3D PSCs. Time-resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D-3D stacking-layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D-3D PSCs show significantly improved long-term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 +/- 10%.

read more

Citations
More filters
Journal ArticleDOI

Surface passivation of perovskite film for efficient solar cells

TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Journal ArticleDOI

An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss

TL;DR: In this article, the hidden role of isopropyl alcohol (IPA) in surface treatments is demonstrated and a strategy in which the passivating agent is deposited without destabilizing the high quality perovskite underlayer.
Journal ArticleDOI

Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications.

TL;DR: The fundamental background knowledge of nucleation and crystal growth processes in solution including the LaMer model and Ostwald ripening process is described and the contemporary progress in chemical precursor composition is provided to comprehend the current research approaches to further enhance photovoltaic performance and device stability.
Journal ArticleDOI

Causes and Solutions of Recombination in Perovskite Solar Cells

TL;DR: The focus herein is on the recombination at perovskite/electron-transporting material and perovSkite/hole-transport material interfaces in normal or inverted PSCs.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells

TL;DR: The introduction of additional iodide ions into the organic cation solution, which is used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects, enabling the fabrication of PSCs with a certified power conversion efficiency.
Journal ArticleDOI

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency

TL;DR: In this paper, the triple cation perovskite photovoltaics with inorganic cesium were shown to be thermally more stable, contain less phase impurities and are less sensitive to processing conditions.
Journal ArticleDOI

High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells

TL;DR: Thin films of near-single-crystalline quality are produced, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport.
Journal ArticleDOI

Perovskite energy funnels for efficient light-emitting diodes

TL;DR: A perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture functions as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiatives recombination.
Related Papers (5)