scispace - formally typeset
Journal ArticleDOI

Land surface processes and Sahel climate

Sharon E. Nicholson
- 01 Feb 2000 - 
- Vol. 38, Iss: 1, pp 117-139
Reads0
Chats0
TLDR
In this article, the authors examine the role of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall, and present arguments for the role that land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the area, a factor implicated by some as a cause of the changes in rainfall.
Abstract
This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25–40% between 1931–1960 and 1968–1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales have demonstrated that the net feedback to the atmosphere is positive for both wet and dry surface anomalies. Hence the role of the surface is to reinforce meteorologically induced changes. Recovery from the dry state is slower than from the wet state, suggesting that dry conditions would tend to persist longer, as is actually observed in the Sahel. These simple models suggest that the surface hydrology locks the system into a drought mode that persists for several years, until the system randomly slips into a persistent wet mode. The hypothesis that desertification in the Sahel might likewise be responsible for the persistent drought is found to be untenable. Rather than a progressive encroachment of the desert onto the savanna, the vegetation cover responds dramatically to interannual fluctuations in rainfall. There is little evidence of large-scale denudation of soils, increase in surface albedo, or reduction of the productivity of the land, although degradation has probably occurred in some areas. There has, however, been a steady buildup of dust in the region over the last half a century. Significant radiative effects of the dust have been demonstrated; therefore the dust has probably influenced large-scale climate. The buildup is probably mainly a result of changes in the land surface that accompanied the shift to drier conditions, but it may have been exacerbated by anthropogenic factors. Complex general circulation models nearly universally underscore the importance of feedback processes in the region. Although it has not been unequivocally demonstrated that the rainfall regime of the Sahel is modulated by surface processes, there is recent observational evidence that this is case.

read more

Citations
More filters
Journal ArticleDOI

Simulation of Sahel drought in the 20th and 21st centuries.

TL;DR: Simulations using a new global climate model capture several aspects of the 20th century rainfall record in the Sahel that display striking similarity to the observed time series and drying pattern, consistent with the hypothesis that the observations are a superposition of an externally forced trend and internal variability.
Journal ArticleDOI

Global semi-arid climate change over last 60 years

TL;DR: This article analyzed areal changes and regional climate variations in global semi-arid regions over 61 years (1948-2008) and investigated the dynamics of global semiarid climate change.
Journal ArticleDOI

Oceanic and terrestrial sources of continental precipitation

TL;DR: The most important sources of atmospheric moisture at the global scale are identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions as discussed by the authors.
Journal ArticleDOI

The recent Sahel drought is real

TL;DR: Using station rainfall data extracted from two comprehensive data sets, this paper showed that large decreasing rainfall trends were widespread in the Sahel from the late 1950s to the late 1980s.
Journal ArticleDOI

Surface radiative forcing by soil dust aerosols and the hydrologic cycle

TL;DR: In this article, the surface forcing by soil dust aerosols and its global sensitivity by varying aspects of the dust distribution are poorly constrained by observations are calculated. And they find that dust reduces precipitation during glacial times by as much as half the reduction due to the colder climate alone.
References
More filters
Journal ArticleDOI

Biological Feedbacks in Global Desertification

TL;DR: Studies of ecosystem processes on the Jornada Experimental Range in southern New Mexico suggest that longterm grazing of semiarid grasslands leads to an increase in the spatial and temporal heterogeneity of water, nitrogen, and other soil resources, which leads to the desertification of formerly productive land.
Journal ArticleDOI

A global biome model based on plant physiology and dominance, soil properties and climate

TL;DR: A model to predict global patterns in vegetation physiognomy was developed from physiological considera- tions influencing the distributions of different functional types of plant in a given environment, and selected the potentially dominant types from among them as discussed by the authors.
Journal ArticleDOI

Dynamics of deserts and drought in the Sahel

TL;DR: It is suggested that the high albedo of a desert contributes to a net radiative heat loss relative to its surroundings and that the resultant horizontal temperature gradients induce a frictionally controlled circulation which imports heat aloft and maintains thermal equilibrium through sinking motion and adiabatic compression as discussed by the authors.
Journal ArticleDOI

The influence on climate forcing of mineral aerosols from disturbed soils

TL;DR: In this article, the authors used a radiative transfer model embedded in a general circulation model to find that dust from disturbed soils causes a decrease of the net surface radiation forcing of about lWm-2, accompanied by increased atmospheric heating.
Journal ArticleDOI

Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness

TL;DR: In this paper, a global three-dimensional model of the atmospheric mineral dust cycle is developed for the study of its impact on the radiative balance of the atmosphere, which includes four size classes of minearl dust, whose source distributions are based on the distributions of vegetation, soil texture and soil moisture.
Related Papers (5)