scispace - formally typeset
Search or ask a question

Showing papers in "Reviews of Geophysics in 2012"


Journal ArticleDOI
TL;DR: In this article, a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use is presented.
Abstract: [1] Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

1,104 citations


Journal ArticleDOI
TL;DR: In this paper, the authors survey the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, including a long-term variability and trends perspective.
Abstract: [1] This review surveys the basic theories, observational methods, satellite algorithms, and land surface models for terrestrial evapotranspiration, E (or λE, i.e., latent heat flux), including a long-term variability and trends perspective. The basic theories used to estimate E are the Monin-Obukhov similarity theory (MOST), the Bowen ratio method, and the Penman-Monteith equation. The latter two theoretical expressions combine MOST with surface energy balance. Estimates of E can differ substantially between these three approaches because of their use of different input data. Surface and satellite-based measurement systems can provide accurate estimates of diurnal, daily, and annual variability of E. But their estimation of longer time variability is largely not established. A reasonable estimate of E as a global mean can be obtained from a surface water budget method, but its regional distribution is still rather uncertain. Current land surface models provide widely different ratios of the transpiration by vegetation to total E. This source of uncertainty therefore limits the capability of models to provide the sensitivities of E to precipitation deficits and land cover change.

913 citations


Journal ArticleDOI
TL;DR: In this article, the effect of aerosols on convective precipitation processes has been studied in the context of cloud resolution models (CRMs) and the results from (CRM) simulations.
Abstract: Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics: observational evidence of the effect of aerosols on precipitation processes, and results from (CRM) simulations. Note that this presentation is mainly based on a recent paper published in Geophy. Rev. (Tao et al. 2012).

673 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe the magnitude of the soil moisture upscaling problem and measurement density requirements for ground-based soil moisture networks, and summarize a number of existing soil moisture-upscaling strategies which may reduce the detrimental impact of spatial sampling errors on the reliability of satellite soil moisture validation using spatially sparse ground based observations.
Abstract: [1] The contrast between the point-scale nature of current ground-based soil moisture instrumentation and the ground resolution (typically >102 km2) of satellites used to retrieve soil moisture poses a significant challenge for the validation of data products from current and upcoming soil moisture satellite missions. Given typical levels of observed spatial variability in soil moisture fields, this mismatch confounds mission validation goals by introducing significant sampling uncertainty in footprint-scale soil moisture estimates obtained from sparse ground-based observations. During validation activities based on comparisons between ground observations and satellite retrievals, this sampling error can be misattributed to retrieval uncertainty and spuriously degrade the perceived accuracy of satellite soil moisture products. This review paper describes the magnitude of the soil moisture upscaling problem and measurement density requirements for ground-based soil moisture networks. Since many large-scale networks do not meet these requirements, it also summarizes a number of existing soil moisture upscaling strategies which may reduce the detrimental impact of spatial sampling errors on the reliability of satellite soil moisture validation using spatially sparse ground-based observations.

601 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that mesoscale convective systems are triggered by nocturnal downslope flows and by diurnally triggered disturbances propagating away from mountain ranges.
Abstract: [1] Precipitation over and near mountains is not caused by topography but, rather, occurs when storms of a type that can occur anywhere (deep convection, fronts, tropical cyclones) form near or move over complex terrain. Deep convective systems occurring near mountains are affected by channeling of airflow near mountains, capping of moist boundary layers by flow subsiding from higher terrain, and triggering to break the cap when low-level flow encounters hills near the bases of major mountain ranges. Mesoscale convective systems are triggered by nocturnal downslope flows and by diurnally triggered disturbances propagating away from mountain ranges. The stratiform regions of mesoscale convective systems are enhanced by upslope flow when they move over mountains. In frontal cloud systems, the poleward flow of warm-sector air ahead of the system may rise easily over terrain, and a maximum of precipitating cloud occurs over the first rise of terrain, and rainfall is maximum on ridges and minimum in valleys. If the low-level air ahead of the system is stable, blocking or damming occurs. Shear between a blocked layer and unblocked moist air above favors turbulent overturning, which can accelerate precipitation fallout. In tropical cyclones, the tangential winds encountering a mountain range produce a gravity wave response and greatly enhanced upslope flow. Depending on the height of the mountain, the maximum rain may occur on either the windward or leeward side. When the capped boundary layer of the eye of a tropical cyclone passes over a mountain, the cap may be broken with intense convection resulting.

600 citations


Journal ArticleDOI
TL;DR: A broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers is presented in this article, focusing on the coupling between geomorphological and ecological processes and how these feedbacks are included in predictive models of landform evolution.
Abstract: Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

571 citations


Journal ArticleDOI
TL;DR: In this article, a review of magnetic properties and the environmental processes that give rise to the measured magnetic signal is presented, and the power of environmental magnetism in enabling quantitative environmental interpretations is discussed.
Abstract: [1] In environmental magnetism, rock and mineral magnetic techniques are used to investigate the formation, transportation, deposition, and postdepositional alterations of magnetic minerals under the influences of a wide range of environmental processes. All materials respond in some way to an applied magnetic field, and iron-bearing minerals are sensitive to a range of environmental processes, which makes magnetic measurements extremely useful for detecting signals associated with environmental processes. Environmental magnetism has grown considerably since the mid 1970s and now contributes to research in the geosciences and in branches of physics, chemistry, and biology and environmental science, including research on climate change, pollution, iron biomineralization, and depositional and diagenetic processes in sediments to name a few applications. Magnetic parameters are used to routinely scan sediments, but interpretation is often difficult and requires understanding of the underlying physics and chemistry. Thorough examination of magnetic properties and of the environmental processes that give rise to the measured magnetic signal is needed to avoid ambiguities, complexities, and limitations to interpretations. In this review, we evaluate environmental magnetic parameters based on theory and empirical results. We describe how ambiguities can be resolved by use of combined techniques and demonstrate the power of environmental magnetism in enabling quantitative environmental interpretations. We also review recent developments that demonstrate the mutual benefit of environmental magnetism from close collaborations with biology, chemistry, and physics. Finally, we discuss directions in which environmental magnetism is likely to develop in the future.

525 citations


Journal ArticleDOI
TL;DR: In this paper, the role of evapotranspiration in the global, continental, regional, and local water cycles is reviewed, and a mathematical closure that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed.
Abstract: [1] The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical “closure” that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

436 citations


Journal ArticleDOI
TL;DR: The most important sources of atmospheric moisture at the global scale are identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions as discussed by the authors.
Abstract: [1] The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El Nino–Southern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.

415 citations


Journal ArticleDOI
TL;DR: The work in this article summarizes recent progress on monitoring and analyzing the dust distribution over the Sahara and discusses implications for numerical modeling, including better quantification of the relative importance of single processes and a more realistic representation of the effects of the smaller-scale meteorological features in dust models.
Abstract: Atmospheric mineral dust has recently become an important research field in Earth system science because of its impacts on radiation, clouds, atmospheric dynamics and chemistry, air quality, and biogeochemical cycles. Studying and modeling dust emission and transport over the world's largest source region, the Sahara, is particularly challenging because of the complex meteorology and a very sparse observational network. Recent advances in satellite retrievals together with ground- and aircraft-based field campaigns have fostered our understanding of the spatiotemporal variability of the dust aerosol and its atmospheric drivers. We now have a more complete picture of the key processes in the atmosphere associated with dust emission. These cover a range of scales from (1) synoptic scale cyclones in the northern sector of the Sahara, harmattan surges and African easterly waves, through (2) low-level jets and cold pools of mesoscale convective systems (particularly over the Sahel), to (3) microscale dust devils and dusty plumes, each with its own pronounced diurnal and seasonal characteristics. This paper summarizes recent progress on monitoring and analyzing the dust distribution over the Sahara and discusses implications for numerical modeling. Among the key challenges for the future are a better quantification of the relative importance of single processes and a more realistic representation of the effects of the smaller-scale meteorological features in dust models. In particular, moist convection has been recognized as a major limitation to our understanding because of the inability of satellites to observe dust under clouds and the difficulties of numerical models to capture convective organization.

306 citations


Journal ArticleDOI
TL;DR: Manga et al. as discussed by the authors studied the changes in permeability caused by transient stresses in the Earth's crust and proposed several mechanisms to change the permeability of geologic media, such as unblocking colloidal deposits or mobilizing droplets and bubbles trapped in pores.
Abstract: CHANGES IN PERMEABILITY CAUSED BY TRANSIENT STRESSES: FIELD OBSERVATIONS, EXPERIMENTS, AND MECHANISMS Michael Manga, 1 Igor Beresnev, 2 Emily E. Brodsky, 3 Jean E. Elkhoury, 4 Derek Elsworth, 5 S. E. Ingebritsen, 6 David C. Mays, 7 and Chi-Yuen Wang 1 Received 7 November 2011; revised 15 February 2012; accepted 10 March 2012; published 12 May 2012. [ 1 ] Oscillations in stress, such as those created by earth- quakes, can increase permeability and fluid mobility in geo- logic media. In natural systems, strain amplitudes as small as 10 A6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitor- ing permeability in geothermal systems where there is abun- dant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution. Citation: Manga, M., I. Beresnev, E. E. Brodsky, J. E. Elkhoury, D. Elsworth, S. E. Ingebritsen, D. C. Mays, and C.-Y. Wang (2012), Changes in permeability caused by transient stresses: Field observations, experiments, and mechanisms, Rev. Geophys., 50, RG2004, doi:10.1029/2011RG000382. INTRODUCTION [ 2 ] The permeability of Earth’s crust is of great interest because it largely governs key geologic processes such as advective transport of heat and solutes and the generation of elevated fluid pressures by processes such as physical com- paction, heating, and mineral dehydration. For an isotropic Department of Earth and Planetary Science, University of California, Berkeley, California, USA. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA. Department of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA. Department of Civil and Environmental Engineering, University of California, Irvine, California, USA. Department of Energy and Mineral Engineering, Center for Geomechanics, Geofluids, and Geohazards, EMS Energy Institute, Pennsylvania State University, University Park, Pennsylvania, USA. U.S. Geological Survey, Menlo Park, California, USA. Department of Civil Engineering, University of Colorado Denver, Denver, Colorado, USA. Corresponding author: M. Manga, Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720, USA. (manga@seismo.berkeley.edu) material, permeability k is defined by Darcy’s law that relates the fluid discharge per unit area q to the gradient of hydraulic head h, q ¼A kgr rh; m where r is the fluid density, m the fluid viscosity and g is gravity. The permeability of common geologic media varies by approximately 16 orders of magnitude, from values as low as 10 A23 m 2 in intact crystalline rock, intact shales, and fault cores, to values as high as 10 A7 m 2 in well-sorted gravels. Nevertheless, despite being highly heterogeneous, perme- ability can be characterized at the crustal scale in a manner that provides useful insight [e.g., Gleeson et al., 2011]. [ 3 ] The responses of hydrologic systems to deformation provide some insight into controls on permeability, in par- ticular its evolution in time. For example, the water level in wells and discharge in rivers have both been observed to change after earthquakes. Because earthquakes produce stresses that can change hydrogeologic properties of the crust, hydrologic responses to earthquakes are expected, especially in the near field (within a fault length of the Copyright 2012 by the American Geophysical Union. Reviews of Geophysics, 50, RG2004 / 2012 1 of 24 Paper number 2011RG000382 8755-1209/12/2011RG000382 RG2004

Journal ArticleDOI
TL;DR: In this article, the authors use observations from a particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion, human modification of sediment supply, introduction of nonnative species, sewage input, environmental policy, and climate shifts.
Abstract: [1] Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays, and inland seas in response to these diverse forces We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion, human modification of sediment supply, introduction of nonnative species, sewage input, environmental policy, and climate shifts In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion, decreasing turbidity, restructuring of plankton communities, nutrient enrichment, elimination of hypoxia and reduced metal contamination of biota, and food web changes that decrease resistance of the estuary to nutrient pollution Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems The many time scales of variability and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs, but the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater

Journal ArticleDOI
TL;DR: In this paper, the authors review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation.
Abstract: We review and synthesize the geologic record that constrains the sources of sea level rise and freshwater discharge to the global oceans associated with retreat of ice sheets during the last deglaciation. The Last Glacial Maximum (∼26–19 ka) was terminated by a rapid 5–10 m sea level rise at 19.0–19.5 ka, sourced largely from Northern Hemisphere ice sheet retreat in response to high northern latitude insolation forcing. Sea level rise of 8–20 m from ∼19 to 14.5 ka can be attributed to continued retreat of the Laurentide and Eurasian Ice Sheets, with an additional freshwater forcing of uncertain amount delivered by Heinrich event 1. The source of the abrupt acceleration in sea level rise at ∼14.6 ka (meltwater pulse 1A, ∼14–15 m) includes contributions of 6.5–10 m from Northern Hemisphere ice sheets, of which 2–7 m represents an excess contribution above that derived from ongoing ice sheet retreat. Widespread retreat of Antarctic ice sheets began at 14.0–15.0 ka, which, together with geophysical modeling of far-field sea level records, suggests an Antarctic contribution to this meltwater pulse as well. The cause of the subsequent Younger Dryas cold event can be attributed to eastward freshwater runoff from the Lake Agassiz basin to the St. Lawrence estuary that agrees with existing Lake Agassiz outlet radiocarbon dates. Much of the early Holocene sea level rise can be explained by Laurentide and Scandinavian Ice Sheet retreat, with collapse of Laurentide ice over Hudson Bay and drainage of Lake Agassiz basin runoff at ∼8.4–8.2 ka to the Labrador Sea causing the 8.2 ka event.

Journal ArticleDOI
TL;DR: For more than four decades, scientists have been trying to find an answer to one of the most fundamental questions in paleoclimatology, the "faint young Sun problem" as discussed by the authors.
Abstract: [1] For more than four decades, scientists have been trying to find an answer to one of the most fundamental questions in paleoclimatology, the “faint young Sun problem.” For the early Earth, models of stellar evolution predict a solar energy input to the climate system that is about 25% lower than today. This would result in a completely frozen world over the first 2 billion years in the history of our planet if all other parameters controlling Earth's climate had been the same. Yet there is ample evidence for the presence of liquid surface water and even life in the Archean (3.8 to 2.5 billion years before present), so some effect (or effects) must have been compensating for the faint young Sun. A wide range of possible solutions have been suggested and explored during the last four decades, with most studies focusing on higher concentrations of atmospheric greenhouse gases like carbon dioxide, methane, or ammonia. All of these solutions present considerable difficulties, however, so the faint young Sun problem cannot be regarded as solved. Here I review research on the subject, including the latest suggestions for solutions of the faint young Sun problem and recent geochemical constraints on the composition of Earth's early atmosphere. Furthermore, I will outline the most promising directions for future research. In particular I would argue that both improved geochemical constraints on the state of the Archean climate system and numerical experiments with state-of-the-art climate models are required to finally assess what kept the oceans on the Archean Earth from freezing over completely.

Journal ArticleDOI
TL;DR: A review of the available mathematical models that include the interaction between groundwater levels and vegetative water use can be found in this paper, where the authors describe the physiological features that characterize groundwater-dependent vegetation, review different methods to study vegetation water use in the field, and discuss recent advances in the understanding of how groundwater levels might determine vegetation composition.
Abstract: [1] In many regions around the world, groundwater is the key source of water for some vegetation species, and its availability and dynamics can define vegetation composition and distribution. In recent years the interaction between groundwater and vegetation has seen a renewed attention because of the impact of groundwater extraction on natural ecosystems' health and increasing interest in the restoration of riparian zones and wetlands. The literature provides studies that approach this problem from very different angles. Information on the vegetation species that are likely to depend on groundwater and the physical characteristics of such species can be found in a large body of literature in ecology and plant physiology. Environmental engineers, hydrologists, and geoscientists are more focused on ecosystem restoration and the estimation of a catchment's water balance, for which the groundwater transpired by vegetation might be an important component. Here we join together these different bodies of literature with the aim of providing the state of knowledge on groundwater-dependent vegetation. We describe the physiological features that characterize groundwater-dependent vegetation, review different methods to study vegetation water use in the field, discuss recent advances in the understanding of how groundwater levels might determine vegetation composition, and present a summary of the available mathematical models that include the interaction between groundwater levels and vegetative water use. Several future research directions are identified, such as the quantification and modeling of the partitioning of transpiration between unsaturated and saturated zones and the development of integrated models able to link hydrology, ecology, and geomorphology.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, planned for 2012-2013, which they offer as a guide to future subglacial environment research missions.
Abstract: Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history and climate change within their lake floor sediments. To find whether or not this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments are required. Ever since the water depth of Vostok Subglacial Lake was shown to be >500 m, attention has been given to how these unique, ancient, and pristine environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the U.S. National Academy of Sciences and the Scientific Committee on Antarctic Research. Here we summarize the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, planned for 2012–2013, which we offer as a guide to future subglacial environment research missions. The proposed exploration involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow sample collection. We focus here on how this can be undertaken with minimal environmental impact while maximizing scientific return without compromising the environment for future experiments.

Journal ArticleDOI
TL;DR: In this article, a new climatology of clouds over Antarctica and the Southern Ocean is derived from combined measurements of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites.
Abstract: [1] Compared to other regions, little is known about clouds in Antarctica. This arises in part from the challenging deployment of instrumentation in this remote and harsh environment and from the limitations of traditional satellite passive remote sensing over the polar regions. Yet clouds have a critical influence on the ice sheet's radiation budget and its surface mass balance. The extremely low temperatures, absolute humidity levels, and aerosol concentrations found in Antarctica create unique conditions for cloud formation that greatly differ from those encountered in other regions, including the Arctic. During the first decade of the 21st century, new results from field studies, the advent of cloud observations from spaceborne active sensors, and improvements in cloud parameterizations in numerical models have contributed to significant advances in our understanding of Antarctic clouds. This review covers four main topics: (1) observational methods and instruments, (2) the seasonal and interannual variability of cloud amounts, (3) the microphysical properties of clouds and aerosols, and (4) cloud representation in global and regional numerical models. Aside from a synthesis of the existing literature, novel insights are also presented. A new climatology of clouds over Antarctica and the Southern Ocean is derived from combined measurements of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites. This climatology is used to assess the forecast cloud amounts in 20th century global climate model simulations. While cloud monitoring over Antarctica from space has proved essential to the recent advances, the review concludes by emphasizing the need for additional in situ measurements.

Journal ArticleDOI
TL;DR: In this paper, the authors review the existing knowledge about the physical structure of the Gibraltar exchange today and the evidential basis for arguments that it has been different in the past, and test prevailing concepts regarding the potential causes of these past changes.
Abstract: [1] The Mediterranean Sea provides a major route for heat and freshwater loss from the North Atlantic and thus is an important cause of the high density of Atlantic waters. In addition to the traditional view that loss of fresh water via the Mediterranean enhances the general salinity of the North Atlantic, and the interior of the eastern North Atlantic in particular, it should be noted that Mediterranean water outflowing at Gibraltar is in fact cooler than compensating inflowing water. The consequence is that the Mediterranean is also a region of heat loss from the Atlantic and contributes to its large-scale cooling. Uniquely, this system can be understood physically via the constraints placed on it by a single hydraulic structure: the Gibraltar exchange. Here we review the existing knowledge about the physical structure of the Gibraltar exchange today and the evidential basis for arguments that it has been different in the past. Using a series of quantitative experiments, we then test prevailing concepts regarding the potential causes of these past changes. We find that (1) changes in the vertical position of the plume of Mediterranean water in the Atlantic are controlled by the vertical density structure of the Atlantic; (2) a prominent Early Holocene “contourite gap” within the Gulf of Cadiz is a response to reduced buoyancy loss in the eastern Mediterranean during the time of “sapropel 1” deposition; (3) changes in buoyancy loss from the Mediterranean during MIS3 caused changes in the bottom velocity field in the Gulf of Cadiz, but we note that the likely cause is reduced freshwater loss and not enhanced heat loss; and (4) strong exchange at Gibraltar during Atlantic freshening phases implies that the Gibraltar exchange provides a strong negative feedback to reduced Atlantic meridional overturning. Given the very counterintuitive way in which the Strait of Gibraltar system behaves, we recommend that without quantitative supporting work, qualitative interpretations of how the system has responded to past external forcing are unlikely to be robust.

Journal ArticleDOI
TL;DR: The Wind Imaging Interferometer (WINDII) was launched on the NASA's Upper Atmosphere Research Satellite on 12 September 1991 and operated until 2003 as discussed by the authors, and its role in the mission was to measure vector winds in the Earth's atmosphere from 80 to 110 km, but its measurements extended to nearly 300 km.
Abstract: The Wind Imaging Interferometer (WINDII) was launched on the NASA's Upper Atmosphere Research Satellite on 12 September 1991 and operated until 2003. Its role in the mission was to measure vector winds in the Earth's atmosphere from 80 to 110 km, but its measurements extended to nearly 300 km. The approach employed was to measure Doppler shifts from a suite of visible region airglow lines emitted over this altitude range. These included atomic oxygen O(1S) and O(1D) lines, as well as lines in the OH Meinel (8,3) and O2 Atmospheric (0,0) bands. The instrument employed was a Doppler Michelson Interferometer (DMI) that measured the Doppler shift as a phase shift of the cosinusoidal interferogram generated by single airglow lines. An extensive validation program was conducted after launch to confirm the accuracy of the measurements. The dominant wind field, the first one observed by WINDII, was that of the migrating diurnal tide at the equator. The overall most notable WINDII contribution followed from this; determining the influence of dynamics on the transport of atmospheric species. Currently, non-migrating tides are being studied in the thermosphere at both equatorial and high latitudes. Other aspects investigated included solar and geomagnetic influences, temperatures from atmospheric scale heights, nitric oxide concentrations and the occurrence of polar mesospheric clouds. The results of these observations are reviewed from a perspective of twenty years. A future perspective is then projected, involving more recently developed concepts. It is intended that this description will be helpful for those planning future missions.

Journal ArticleDOI
TL;DR: In this article, the authors examine the different cases in which deforestation can lead to a loss of conditions necessary to sustain forest vegetation and discuss the economic implications of these feedbacks and how socioeconomic factors can affect the convergence of a system to a given stable state.
Abstract: [1] Forest vegetation can interact with its surrounding environment in ways that enhance conditions favorable for its own existence. Removal of forest vegetation has been shown to alter these conditions in a number of ways, thereby inhibiting the reestablishment of the same community of woody plants. The effect of vegetation on an environmental variable along with vegetation susceptibility to the associated environmental conditions may imply a positive feedback: Changes in the internal conditions controlling this variable such as deforestation could inhibit the reestablishment of woody vegetation cover that in turn would act to further degrade the conditions necessary for forest regeneration. Understanding these feedbacks is important because in some cases where these feedbacks are present, deforestation can lead to irreversible state shifts where the forest vegetation cannot recover. In this review, we examine the different cases in which deforestation can lead to a loss of conditions necessary to sustain forest vegetation. We examine the spatial scale and extent of each feedback in addition to considering the temporal scale over which a feedback may be considered irreversible. Juxtaposing the spatial extent of these feedbacks with a map of deforestation enables the identification and discussion of at-risk areas to state changes following deforestation. Last, we discuss the economic implications of these feedbacks and how socioeconomic factors can affect the convergence of a system to a given stable state.

Journal ArticleDOI
TL;DR: A review of geoneutrino observations and the prospects for measuring the radioactive power of the planet can be found in this article, where the authors present the science and status of these observations and discuss the potential for measuring radiogenic heating with better precision.
Abstract: [1] Chemical and physical Earth models agree little as to the radioactive power of the planet. Each predicts a range of radioactive powers, overlapping slightly with the other at about 24 TW, and together spanning 14–46 TW. Approximately 20% of this radioactive power (3–8 TW) escapes to space in the form of geoneutrinos. The remaining 11–38 TW heats the planet with significant geodynamical consequences, appearing as the radiogenic component of the 43–49 TW surface heat flow. The nonradiogenic component of the surface heat flow (5–38 TW) is presumably primordial, a legacy of the formation and early evolution of the planet. A constraining measurement of radiogenic heating provides insights to the thermal history of the Earth and potentially discriminates chemical and physical Earth models. Radiogenic heating in the planet primarily springs from unstable nuclides of uranium, thorium, and potassium. The paths to their stable daughter nuclides include nuclear beta decays, producing geoneutrinos. Large subsurface detectors efficiently record the energy but not the direction of the infrequent interactions of the highest-energy geoneutrinos, originating only from uranium and thorium. The measured energy spectrum of the interactions estimates the relative amounts of these heat-producing elements, while the intensity estimates planetary radiogenic power. Recent geoneutrino observations in Japan and Italy find consistent values of radiogenic heating. The combined result mildly excludes the lowest model values of radiogenic heating and, assuming whole mantle convection, identifies primordial heat loss. Future observations have the potential to measure radiogenic heating with better precision, further constraining geological models and the thermal evolution of the Earth. This review presents the science and status of geoneutrino observations and the prospects for measuring the radioactive power of the planet.

Journal ArticleDOI
TL;DR: A detailed characterization of overpressured systems has been accomplished through geological and geotechnical analyses, including investigation of physical-mechanical properties (mainly porosity, consolidation state, and shear strength), inversion of geophysical data (e.g., compressional and/or shear velocities), measurement of in situ properties, and postevent analyses as mentioned in this paper.
Abstract: [1] Fluid pressure in excess of hydrostatic equilibrium, or overpressure, in offshore environments is a widespread phenomenon that contributes to the migration and storage of fluids, solutes, and energy and to the potential mechanical instability of these sediments. Overpressure exists in deep and shallow systems and is most likely to be found where low-permeability ( mm/yr), tectonic loading, and lateral fluid transfer) and thermal and chemical processes (e.g., aquathermal expansion, hydrocarbon generation, mineral diagenesis, and organic maturation). In systems where near-lithostatic overpressures are generated, potentially unstable sediments are created. Failures of these sediments can create large-scale natural disasters, generate fractures, and damage seafloor and subseafloor infrastructure. Detailed characterization of overpressured systems has been accomplished through geological and geotechnical analyses, including investigation of physical-mechanical properties (mainly porosity, consolidation state, and shear strength), inversion of geophysical data (e.g., compressional and/or shear velocities), measurement of in situ properties, and postevent analyses. Process-based models have been developed to explain the origin of overpressure in terms of rate of overpressure genesis. This allows identification of potentially unstable zones and assessment of the potential for failure. Future development in measurements and in coupling of models will lead to more accurate analysis and prediction of fluid pressure in offshore sediments, which in turn will facilitate better hazard analyses and will enable safer and more cost-effective offshore drilling practices and other offshore infrastructure development.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the relationship between spatial curvature and width oscillations in river meanders and related bed-form patterns, and propose a hierarchy of models that descend from a two-parameter perturbation solution of the governing depth-averaged morphodynamic model.
Abstract: [1] Most morphodynamic models of river meandering assume spatially constant width; depending on the intensity of spatial width variations, different meandering styles actually exist, often associated with midchannel bars and islands. When intense enough, width oscillations characterize transitional planforms between meandering and braiding. We investigate, on a modeling basis, morphodynamic feedbacks between spatial curvature and width oscillations in river meanders and related bedform patterns. Our review of existing mathematical models suggests that width-curvature interactions can be comprehensively analyzed by a hierarchy of models that descend from a two-parameter perturbation solution of the governing depth-averaged morphodynamic model. The focus is on in-stream, autogenic hydromorphodynamic processes, and not explicitly on bank processes. Curvature-width interactions are fundamentally nonlinear: the perturbation approach allows us to investigate the key effects at the first nonlinear interaction. In meanders with initially constant width, curvature nonlinearly forces midchannel bar growth, promoting symmetrical bank erosion further downstream, possibly triggering width oscillations. These in turn can significantly affect the process of bend stability and therefore condition the curvature dynamics. Wider-at-bends meanders develop shorter bends and are morphologically more active compared to equiwidth meanders, coherently with the few available field observations. River evolution models aiming to separately simulate bank erosion and accretion processes should incorporate these autogenic flow-bed nonlinearities. Because of its focus on meandering morphologies close to the transition with braiding, the proposed approach can be taken as a novel, physically based viewpoint to the long-debated subject of channel pattern selection.

Journal ArticleDOI
TL;DR: The most intriguing aspect of the CQE concept is that in spite of many observational tests supporting and interpreting it in many different senses, it has never been established in a robust manner based on a systematic analysis of the cloud work function budget by observations as was originally defined.
Abstract: [1] The concept of convective quasi-equilibrium (CQE) is a key ingredient in order to understand the role of deep moist convection in the atmosphere. It has been used as a guiding principle to develop almost all convective parameterizations and provides a basic theoretical framework for large-scale tropical dynamics. The CQE concept as originally proposed by Arakawa and Schubert (1974) is systematically reviewed from wider perspectives. Various interpretations and extensions of Arakawa and Schubert's CQE are considered both in terms of a thermodynamic analogy and as a dynamical balance. The thermodynamic interpretations can be more emphatically embraced as a homeostasis. The dynamic balance interpretations can be best understood by analogy with the slow manifold. Various criticisms of CQE can be avoided by taking the dynamic balance interpretation. Possible limits of CQE are also discussed, including the importance of triggering in many convective situations, as well as the possible self-organized criticality of tropical convection. However, the most intriguing aspect of the CQE concept is that in spite of many observational tests supporting and interpreting it in many different senses, it has never been established in a robust manner based on a systematic analysis of the cloud work function budget by observations as was originally defined.

Journal ArticleDOI
TL;DR: In this article, the authors present a review of the existing temperature and sea level data and model simulations, with a discussion of uncertainty in each of these approaches, and then synthesize the sea level and temperature data and modeling results.
Abstract: Over the past decade, efforts to estimate temperature and sea level for the past 50 Ma have increased. In parallel, efforts to model ice sheet changes during this period have been ongoing. We review published paleodata and modeling work to provide insights into how sea level responds to changing temperature through changes in ice volume and thermal expansion. To date, the temperature to sea level relationship has been explored for the transition from glacial to interglacial states. Attempts to synthesize the temperature to sea level relationship in deeper time, when temperatures were significantly warmer than present, have been tentative. We first review the existing temperature and sea level data and model simulations, with a discussion of uncertainty in each of these approaches. We then synthesize the sea level and temperature data and modeling results we have reviewed to test plausible forms for the sea level versus temperature relationship. On this very long timescale there are no globally representative temperature proxies, and so we investigate this relationship using deep-sea temperature records and surface temperature records from high and low latitudes. It is difficult to distinguish between the different plausible forms of the temperature to sea level relationship given the wide errors associated with the proxy estimates. We argue that for surface high-latitude Southern Hemisphere temperature and deep-sea temperature, the rate of change of sea level to temperature has not remained constant, i.e., linear, over the past 50 Ma, although the relationship remains ambiguous for the available low-latitude surface temperature data. A nonlinear form between temperature and sea level is consistent with ice sheet modeling studies. This relationship can be attributed to (1) the different glacial thresholds for Southern Hemisphere glaciation compared to Northern Hemisphere glaciation and (2) the ice sheet carrying capacity of the Antarctic continent.

Journal ArticleDOI
TL;DR: In this paper, the authors show that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant.
Abstract: [1] The site investigations at Yucca Mountain, Nevada, have provided us with an outstanding data set, one that has significantly advanced our knowledge of multiphysics processes in partially saturated fractured geological media. Such advancement was made possible, foremost, by substantial investments in multiyear field experiments that enabled the study of thermally driven multiphysics and testing of numerical models at a large spatial scale. The development of coupled-process models within the project have resulted in a number of new, advanced multiphysics numerical models that are today applied over a wide range of geoscientific research and geoengineering applications. Using such models, the potential impact of thermal-hydrological-mechanical (THM) multiphysics processes over the long-term (e.g., 10,000 years) could be predicted and bounded with some degree of confidence. The fact that the rock mass at Yucca Mountain is intensively fractured enabled continuum models to be used, although discontinuum models were also applied and are better suited for analyzing some issues, especially those related to predictions of rockfall within open excavations. The work showed that in situ tests (rather than small-scale laboratory experiments alone) are essential for determining appropriate input parameters for multiphysics models of fractured rocks, especially related to parameters defining how permeability might evolve under changing stress and temperature. A significant laboratory test program at Yucca Mountain also made important contributions to the field of rock mechanics, showing a unique relation between porosity and mechanical properties, a time dependency of strength that is significant for long-term excavation stability, a decreasing rock strength with sample size using very large core experiments, and a strong temperature dependency of the thermal expansion coefficient for temperatures up to 200°C. The analysis of in situ heater experiments showed that fracture closure/opening caused by changes in normal stress across fractures was the dominant mechanism for thermally induced changes in intrinsic fracture permeability during rock mass heating/cooling and that fracture shear dilation appears to be less significant. Significant effort was devoted to predicting the long-term stability of underground excavations under (mechanical) strength degradation and seismic loading, perhaps one of the most challenging tasks within the project. We note that such long-term strength degradation is actually an example of a chemically mediated process governed by underlying (microscopic) stress corrosion and chemical diffusion processes. In the Yucca Mountain Project, such chemically mediated mechanical changes were considered implicitly through model calibrations against laboratory and in situ heater experiments at temperatures anticipated to be experienced by the rock. A possible future research direction would be to simulate such processes mechanistically in a complete coupled THMC framework where C denotes chemical processes.

Journal ArticleDOI
TL;DR: Fritts and Alexander as mentioned in this paper pointed out a few minor errors in the equations of the original paper, and several others had also pointed these out, prompting this correction and a corrigendum.
Abstract: [1] In the paper “Gravity wave dynamics and effects in the middle atmosphere” by David C. Fritts and M. Joan Alexander (Reviews of Geophysics, 41(1), 1003, doi:10.1029/ 2001RG000106, 2003), we had noticed a few minor errors in the equations of the original paper, and several others had also pointed these out, prompting this correction. The authors would like to acknowledge Claudia C. Stephan in particular, who was instrumental in helping to identify additional errors and sign ambiguities, and for her work in preparing the corrigendum. [2] We would like to note the following corrections and addenda: [3] 1. Following equation (6), the definition of k is incorrect and should read k = R/cp. [4] 2. For completeness, after equation (12) add cs 2 = (cp/cv) p= r ð Þ. [5] 3. There is a sign error in equation (28). The correct formula should read

Journal ArticleDOI
TL;DR: Gray et al. as mentioned in this paper showed that the C values in Figure 19 (middle) were incorrectly plotted and showed the temperature response rather than the ozone response as described in the caption.
Abstract: [1] In the paper “Solar influences on climate” by L. J. Gray et al. (Reviews of Geophysics, 48, RG4001, doi:10.1029/ 2009RG000282, 2010), Figures 19 and 23 are in error. In Figure 19, the C values in Figure 19 (middle) were incorrectly plotted. In Figure 23, the wrong figure was inadvertently uploaded and showed the temperature response rather than the ozone response as described in the caption. The correct Figures 19 and 23 appear here.