scispace - formally typeset
Journal ArticleDOI

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions

Sheng S. Zhang
- 01 Jun 2013 - 
- Vol. 231, Iss: 231, pp 153-162
TLDR
Li et al. as discussed by the authors discussed the problems and solutions of liquid electrolyte Li/S battery and showed that the dissolution of lithium polysulfide (PS) is essential for the performance of a Li-S cell.
About
This article is published in Journal of Power Sources.The article was published on 2013-06-01. It has received 1348 citations till now. The article focuses on the topics: Lithium–sulfur battery & Electrolyte.

read more

Citations
More filters
Journal ArticleDOI

In situ monitoring the viscosity change of an electrolyte in a Li–S battery

TL;DR: The results have revealed that Li2S2 is a soluble substance in the electrolyte, which contradicts what was suggested in the literature that it is a solid precipitate on the electrode.
Journal ArticleDOI

Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries

TL;DR: A novel full cell battery architecture that bypasses the issues associated with current methods and gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit is presented.
Journal ArticleDOI

Investigation of non-woven carbon paper as a current collector for sulfur positive electrode—Understanding of the mechanism and potential applications for Li/S batteries

TL;DR: In this paper, the authors investigated the impact of using a non-woven carbon (NWC) based current collector for sulfur electrodes, in terms of performance and practical use in a commercial battery, keeping in mind the simplicity of electrode preparation method.
References
More filters
Book

Chemistry of the elements

TL;DR: In this article, the origins of the elements, isotopes and atomic weights Chemical periodicity and the periodic table were discussed, including the following elements: Hydrogen Lithium, sodium, potassium, rubidium, caesium and francium Beryllium, magnesium, calcium, strontium, barium and radium Boron Aluminium, gallium, indium and thallium Carbon Silicon Germanium, tin and lead Nitrogen Phosphorus Arsenic, antimony and bismuth Oxygen Sulfur Selenium, tellurium
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Journal ArticleDOI

Porous Hollow Carbon@Sulfur Composites for High‐Power Lithium–Sulfur Batteries

TL;DR: C @ S nanocomposites based on mesoporous hollow carbon capsules were prepared by a template approach as mentioned in this paper, and their excellent properties as a cathode material in a lithium secondary battery of S-sequestration of elemental sulfur in the carbon capsules, a restricted polysulfide shuttling and an improved electron transport on sulfur are attributed.
Journal ArticleDOI

A review on electrolyte additives for lithium-ion batteries

TL;DR: In this article, a review of electrolyte additives used in Li-ion batteries is presented, which can be classified into five categories: solid electrolyte interface (SEI) forming improver, cathode protection agent, LiPF 6 salt stabilizer, safety protection agent and Li deposition improver.
Related Papers (5)