scispace - formally typeset
Journal ArticleDOI

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions

Sheng S. Zhang
- 01 Jun 2013 - 
- Vol. 231, Iss: 231, pp 153-162
TLDR
Li et al. as discussed by the authors discussed the problems and solutions of liquid electrolyte Li/S battery and showed that the dissolution of lithium polysulfide (PS) is essential for the performance of a Li-S cell.
About
This article is published in Journal of Power Sources.The article was published on 2013-06-01. It has received 1348 citations till now. The article focuses on the topics: Lithium–sulfur battery & Electrolyte.

read more

Citations
More filters
Journal ArticleDOI

Electrochemically Stable Rechargeable Lithium–Sulfur Batteries with a Microporous Carbon Nanofiber Filter for Polysulfide

TL;DR: In this paper, a custom separator with an activated carbon nanofiber (ACNF)-filter coated onto a polypropylene membrane is presented, where the entire configuration is comprised of the ACNF filter arranged adjacent to the sulfur cathode so that it can filter out the freely migrating polysulfides and suppress the severe poly sulfide diffusion.
Journal ArticleDOI

Ionic Liquid Electrolytes for Lithium–Sulfur Batteries

TL;DR: In this paper, a variety of binary mixtures of aprotic ionic liquids (ILs) and lithium salts were thoroughly studied as electrolytes for rechargeable lithium-sulfur (Li-S) batteries.
Journal ArticleDOI

Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti4O7 Microspheres for High- Performance Li-S Battery

TL;DR: In this paper, mesoporous Magneli Ti4O7 microspheres and metal oxides have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling.
References
More filters
Book

Chemistry of the elements

TL;DR: In this article, the origins of the elements, isotopes and atomic weights Chemical periodicity and the periodic table were discussed, including the following elements: Hydrogen Lithium, sodium, potassium, rubidium, caesium and francium Beryllium, magnesium, calcium, strontium, barium and radium Boron Aluminium, gallium, indium and thallium Carbon Silicon Germanium, tin and lead Nitrogen Phosphorus Arsenic, antimony and bismuth Oxygen Sulfur Selenium, tellurium
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Journal ArticleDOI

Porous Hollow Carbon@Sulfur Composites for High‐Power Lithium–Sulfur Batteries

TL;DR: C @ S nanocomposites based on mesoporous hollow carbon capsules were prepared by a template approach as mentioned in this paper, and their excellent properties as a cathode material in a lithium secondary battery of S-sequestration of elemental sulfur in the carbon capsules, a restricted polysulfide shuttling and an improved electron transport on sulfur are attributed.
Journal ArticleDOI

A review on electrolyte additives for lithium-ion batteries

TL;DR: In this article, a review of electrolyte additives used in Li-ion batteries is presented, which can be classified into five categories: solid electrolyte interface (SEI) forming improver, cathode protection agent, LiPF 6 salt stabilizer, safety protection agent and Li deposition improver.
Related Papers (5)