scispace - formally typeset
Journal ArticleDOI

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions

Sheng S. Zhang
- 01 Jun 2013 - 
- Vol. 231, Iss: 231, pp 153-162
TLDR
Li et al. as discussed by the authors discussed the problems and solutions of liquid electrolyte Li/S battery and showed that the dissolution of lithium polysulfide (PS) is essential for the performance of a Li-S cell.
About
This article is published in Journal of Power Sources.The article was published on 2013-06-01. It has received 1348 citations till now. The article focuses on the topics: Lithium–sulfur battery & Electrolyte.

read more

Citations
More filters
Journal ArticleDOI

A New Salt-Baked Approach for Confining Selenium in Metal Complex-Derived Porous Carbon with Superior Lithium Storage Properties

TL;DR: In this paper, a new baked-in-salt approach was proposed to enable selenium to better infiltrate into metal-complex-derived porous carbon (Se/MnMC-B).
Journal ArticleDOI

Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte

TL;DR: In this article, a LiBH4 electrolyte was used for stable battery operation of a bulk-type all-solid-state lithium-sulfur battery with high energy density.
Journal ArticleDOI

Polysulfide‐Shuttle Control in Lithium‐Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON‐Type Solid Electrolyte

TL;DR: In this paper, a NaSICON-type Li+-ion conductive membrane with a formula of Li1+ x Y x Zr2−x (PO4)3 (x = 0.15) has been explored as a solid-electrolyte/separator to suppress polysulfide-crossover in lithium-sulfur (Li-S) batteries.
Journal ArticleDOI

Functional, water-soluble binders for improved capacity and stability of lithium–sulfur batteries

TL;DR: In this article, a mixture of poly(ethylene oxide) and poly(vinylpyrrolidone) was used to improve the reversible capacity and capacity retention of lithium sulfur batteries compared to conventional binders.
References
More filters
Book

Chemistry of the elements

TL;DR: In this article, the origins of the elements, isotopes and atomic weights Chemical periodicity and the periodic table were discussed, including the following elements: Hydrogen Lithium, sodium, potassium, rubidium, caesium and francium Beryllium, magnesium, calcium, strontium, barium and radium Boron Aluminium, gallium, indium and thallium Carbon Silicon Germanium, tin and lead Nitrogen Phosphorus Arsenic, antimony and bismuth Oxygen Sulfur Selenium, tellurium
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Journal ArticleDOI

Porous Hollow Carbon@Sulfur Composites for High‐Power Lithium–Sulfur Batteries

TL;DR: C @ S nanocomposites based on mesoporous hollow carbon capsules were prepared by a template approach as mentioned in this paper, and their excellent properties as a cathode material in a lithium secondary battery of S-sequestration of elemental sulfur in the carbon capsules, a restricted polysulfide shuttling and an improved electron transport on sulfur are attributed.
Journal ArticleDOI

A review on electrolyte additives for lithium-ion batteries

TL;DR: In this article, a review of electrolyte additives used in Li-ion batteries is presented, which can be classified into five categories: solid electrolyte interface (SEI) forming improver, cathode protection agent, LiPF 6 salt stabilizer, safety protection agent and Li deposition improver.
Related Papers (5)