scispace - formally typeset
Journal ArticleDOI

Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions

Sheng S. Zhang
- 01 Jun 2013 - 
- Vol. 231, Iss: 231, pp 153-162
TLDR
Li et al. as discussed by the authors discussed the problems and solutions of liquid electrolyte Li/S battery and showed that the dissolution of lithium polysulfide (PS) is essential for the performance of a Li-S cell.
About
This article is published in Journal of Power Sources.The article was published on 2013-06-01. It has received 1348 citations till now. The article focuses on the topics: Lithium–sulfur battery & Electrolyte.

read more

Citations
More filters
Journal ArticleDOI

Importance of open pore structures with mechanical integrity in designing the cathode electrode for lithium–sulfur batteries

TL;DR: In this paper, the performance of Li/S cells can be significantly improved by simply optimizing the electrode processing conditions to have open pore structures and mechanical integrity of the electrode architecture, which can be achieved with relatively high sulfur content of 68%.
Journal ArticleDOI

Ab Initio Force Fields for Organic Anions: Properties of [BMIM][TFSI], [BMIM][FSI], and [BMIM][OTf] Ionic Liquids.

TL;DR: This work develops entirely ab initio force fields for the TFSI, FSI, and OTf anions and predicts the properties of corresponding 1-butyl-3-methylimidazolium ILs and discusses important subtleties in the force field development related to accurately modeling conformational flexibility.
Journal ArticleDOI

Multifunctional Free-Standing Gel Polymer Electrolyte with Carbon Nanofiber Interlayers for High-Performance Lithium–Sulfur Batteries

TL;DR: The as-prepared gel polymer electrolyte membrane with carbon nanofibers interlayer can effectively prevent polysulfide dissolution and shuttle effect, leading to significantly enhanced electrochemical properties, including high capacity and cycling stability, with an enhanced specific capacity of 790 mA h g-1 after 100 cycles.
Journal ArticleDOI

Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

TL;DR: In this article, a dihydrogen phosphate modified carbon matrix (PCM-650) was used as the sulfur host for a Li-S battery, which showed a significant performance improvement.
Journal ArticleDOI

Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries.

TL;DR: In this paper , transition metal compounds (TMCs) are used as catalysts in Li-S batteries to overcome the slow reaction kinetics for the insoluble Li2S product and capacity degradation due to the severe shuttle effect of polysulfides.
References
More filters
Book

Chemistry of the elements

TL;DR: In this article, the origins of the elements, isotopes and atomic weights Chemical periodicity and the periodic table were discussed, including the following elements: Hydrogen Lithium, sodium, potassium, rubidium, caesium and francium Beryllium, magnesium, calcium, strontium, barium and radium Boron Aluminium, gallium, indium and thallium Carbon Silicon Germanium, tin and lead Nitrogen Phosphorus Arsenic, antimony and bismuth Oxygen Sulfur Selenium, tellurium
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Journal ArticleDOI

Porous Hollow Carbon@Sulfur Composites for High‐Power Lithium–Sulfur Batteries

TL;DR: C @ S nanocomposites based on mesoporous hollow carbon capsules were prepared by a template approach as mentioned in this paper, and their excellent properties as a cathode material in a lithium secondary battery of S-sequestration of elemental sulfur in the carbon capsules, a restricted polysulfide shuttling and an improved electron transport on sulfur are attributed.
Journal ArticleDOI

A review on electrolyte additives for lithium-ion batteries

TL;DR: In this article, a review of electrolyte additives used in Li-ion batteries is presented, which can be classified into five categories: solid electrolyte interface (SEI) forming improver, cathode protection agent, LiPF 6 salt stabilizer, safety protection agent and Li deposition improver.
Related Papers (5)