scispace - formally typeset
Open AccessJournal ArticleDOI

m‐AAA protease‐driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria

TLDR
Findings reveal for the first time a non‐proteolytic function of the m‐AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.
Abstract
Maturation of cytochrome c peroxidase (Ccp1) in mitochondria occurs by the subsequent action of two conserved proteases in the inner membrane: the m-AAA protease, an ATP-dependent protease degrading misfolded proteins and mediating protein processing, and the rhomboid protease Pcp1, an intramembrane cleaving peptidase. Neither the determinants preventing complete proteolysis of certain substrates by the m-AAA protease, nor the obligatory requirement of the m-AAA protease for rhomboid cleavage is currently understood. Here, we describe an intimate and unexpected functional interplay of both proteases. The m-AAA protease mediates the ATP-dependent membrane dislocation of Ccp1 independent of its proteolytic activity. It thereby ensures the correct positioning of Ccp1 within the membrane bilayer allowing intramembrane cleavage by rhomboid. Decreasing the hydrophobicity of the Ccp1 transmembrane segment facilitates its dislocation from the membrane and renders rhomboid cleavage m-AAA protease-independent. These findings reveal for the first time a non-proteolytic function of the m-AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.

read more

Content maybe subject to copyright    Report

Citations
More filters
Patent

Methods for treating diseases related to mitochondrial stress

TL;DR: In this article, means and methods for therapeutic intervention of mitochondrial disorders or diseases, and in particular to a method for the treatment, prevention and/or amelioration of a disorder or disease correlated with mitochondrial stress or dysfunction, a mitochondrial disorder, or a disorder characterized by OPA1 alterations are disclosed.
Journal ArticleDOI

The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly

TL;DR: In this paper, a forward genetic screen was used to identify the mitochondrial ATP-dependent metalloprotease, Filamentous Temperature Sensitive H 3 (FTSH3), as a factor that is required for the disassembly of Complex I.
Journal ArticleDOI

Motif-based evidence that a plastid translocon component acts like a rhomboid protease substrate in yeast mitochondria

TL;DR: Here, motif-oriented evidence is obtained that Tic40 acts like a rhomboid protease substrate in yeast mitochondria and may also possess similar transmembrane domain motifs found in the model substrate, Spitz.
Dissertation

The Regulation of Mitochondrial Stress Responses in Caenorhabditis elegans

TL;DR: A genome-wide RNAi screen for negative regulators of the UPR that takes advantage of a highly sensitive UPR fluorescent reporter and RNAi feeding in C. elegans is described.
Dissertation

Characterization of the genetic interactome of prohibitins in S. cerevisiae

TL;DR: The genetic interactome of prohibitins defined in this thesis suggests that prohibitins serve scaffolding functions in the inner mitochondrial membrane and define functional microdomains composed of proteins and non-bilayer forming lipids.
References
More filters
Journal ArticleDOI

AAA+ proteins: have engine, will work.

TL;DR: The structural organization of AAA+ proteins, the conformational changes they undergo, the range of different reactions they catalyse, and the diseases associated with their dysfunction are reviewed.
Journal ArticleDOI

Proteolysis: from the lysosome to ubiquitin and the proteasome.

TL;DR: In this paper, the ubiquitin-proteasome system resolved the enigma of how cellular proteins are degraded in the lysosome and showed that non-lysosomal pathways have an important role in intracellular proteolysis, although their identity and mechanisms of action remained obscure.
Journal ArticleDOI

Regulation of mitochondrial morphology through proteolytic cleavage of OPA1.

TL;DR: M mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a ΔΨ‐dependent manner through proteolytic cleavage of Mgm1, the yeast homolog of O PA1.
Journal ArticleDOI

Solvation Energies of Amino Acid Side Chains and Backbone in a Family of Host−Guest Pentapeptides

TL;DR: The very large peptide bond ASP, -96 +/- 6 cal/mol/A2, profoundly affects the results of computational comparisons of protein stability which use ASPs derived from octanol-water partitioning data.
Journal ArticleDOI

Sculpting the Proteome with AAA+ Proteases and Disassembly Machines

TL;DR: Exciting progress has been made in understanding how AAA(+) machines recognize specific proteins as targets and then carry out ATP-dependent dismantling of the tertiary and/or quaternary structure of these molecules during the processes of protein degradation and the disassembly of macromolecular complexes.
Related Papers (5)