scispace - formally typeset
Journal ArticleDOI

Materials with Negative Compressibilities in One or More Dimensions

TLDR
Rare crystal phases that expand in one or more dimensions when hydrostatically compressed are identified and shown to have negative Poisson's ratios, which may be used to fabricate porous solids that either expand in all directions when hydroStatically compressed with a penetrating fluid or behave as if they are incompressible.
Abstract
Rare crystal phases that expand in one or more dimensions when hydrostatically compressed are identified and shown to have negative Poisson's ratios. Some of these crystals (i) decrease volume and expand in two dimensions when stretched in a particular direction and (ii) increase surface area when hydrostatically compressed. Possible mechanisms for achieving such negative linear and area compressibilities are described for single crystals and composites, and sensor applications are proposed. Materials with these properties may be used to fabricate porous solids that either expand in all directions when hydrostatically compressed with a penetrating fluid or behave as if they are incompressible.

read more

Citations
More filters
Journal ArticleDOI

Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology

TL;DR: By introducing twist during spinning of multiwalled carbon nanotubes from nanotube forests to make multi-ply, torque-stabilized yarns, this work achieves yarn strengths greater than 460 megapascals, nearly as tough as fibers used for bulletproof vests.
Journal ArticleDOI

A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality

TL;DR: In this paper, two families of molecular frameworks which grow as homochiral single crystals are described, which consist of multiple interpenetration of the three-connected chiral (10,3)-a (Y*) network and result from the tridentate coordination of the 1,3,5-benzenetricarboxylate (btc) ligand to octahedral metal centers.
Journal ArticleDOI

Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review

TL;DR: In this article, a clear classification of mechanical metamaterials have been established based on the fundamental material mechanics, which can be divided into strong-lightweight (E/ρ), pattern transformation with tunable stiffness, negative compressibility (−4G/3), and strong light-weight (S/ρ).
Journal ArticleDOI

Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles

TL;DR: Carbon nanotube aerogel sheets are the sole component of new artificial muscles that provide giant elongations and elongation rates of 220% and (3.7 × 104)% per second, respectively, at operating temperatures from 80 to 1900 kelvin.
Journal ArticleDOI

Torsional Carbon Nanotube Artificial Muscles

TL;DR: It is shown that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute.
References
More filters
Journal ArticleDOI

DREIDING: A generic force field for molecular simulations

TL;DR: The DREIDING force field as discussed by the authors uses general force constants and geometry parameters based on simple hybridization considerations rather than individual force constants or geometric parameters that depend on the particular combination of atoms involved in the bond, angle, or torsion terms.
Journal ArticleDOI

Mechanics of deformation and acoustic propagation in porous media

TL;DR: In this paper, a unified treatment of the mechanics of deformation and acoustic propagation in porous media is presented, and some new results and generalizations are derived, including anisotropic media, solid dissipation, and other relaxation effects.
Journal ArticleDOI

Foam structures with a negative poisson's ratio

TL;DR: A novel foam structure is presented, which exhibits a negative Poisson's ratio, and such a material expands laterally when stretched, in contrast to ordinary materials.
Journal ArticleDOI

The mechanics of three-dimensional cellular materials

TL;DR: In this paper, the mechanical properties of two-dimensional cellular materials, or honeycombs, are analyzed and compared with experiments, in terms of bending, elastic buckling and plastic collapse of the beams that make up the cell walls.
Journal ArticleDOI

Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats

TL;DR: The means by which muscular-hydrostats produce elongation, shortening, bending and torsion are discussed.
Related Papers (5)