scispace - formally typeset
Open AccessBook

Metal--Semiconductor Schottky Barrier Junctions and Their Applications

B. L. Sharma
Reads0
Chats0
TLDR
In this paper, the Schottky-Mott theory of ideal metal-Semiconductor contact has been applied to metal-semiconductor interfaces, and a number of interesting results have been reported.
Abstract
1. Physics of Schottky Barrier Junctions.- 1. Introduction.- 2. Origins of Barrier Height.- 2.1. Schottky-Mott Theory of Ideal Metal-Semiconductor Contact.- 2.2. Modifications to Schottky Theory.- 2.3. Classifications of Metal-Semiconductor Interfaces.- 2.4. Contacts on Reactive Interfaces.- 2.5. Contacts with Surface States and an Insulating Interfacial Layer.- 2.6. Contacts on Vacuum Cleaved Surfaces.- 3. Measurement of Barrier Height.- 3.1. Capacitance-Voltage Measurement.- 3.2. Current-Voltage Measurement.- 3.3. Photoelectric Measurement.- 4. Results of Barrier Height Measurements.- 4.1. Chemically Prepared Surfaces.- 4.2. Vacuum Cleaved Surfaces.- 4.3. Concluding Remarks.- 5. Capacitance-Voltage Characteristics.- 5.1. Electric Field and Potential Distribution in the Depletion Region.- 5.2. Depletion Region Capacitance.- 5.2.1. Ideal Schottky Barrier.- 5.2.2. Effect of Minority Carriers.- 5.2.3. Effect of Interfacial Layer.- 5.2.4. Effect of Deep Traps.- 6. Current-Voltage Characteristics.- 6.1. Transport Mechanisms.- 6.1.1. Diffusion and Thermionic Emission over the Barrier.- 6.1.2. Tunneling through the Barrier.- 6.1.3. Carrier Generation and Recombination in the Junction Depletion Region.- 6.1.4. Minority Carrier Injection.- 6.2. Forward Characteristics.- 6.3. Reverse Characteristics.- 7. Transient Behavior.- 8. Low-Resistance Schottky Barrier Contacts.- References.- 2. Interface Chemistry and Structure of Schottky Barrier Formation.- 1. Introduction.- 2. Perspectives on Schottky Barrier Formation.- 2.1. Introduction.- 2.2. Brief Review of Phenomenological Schottky Barrier Data.- 3. The Chemistry and Structure of the Interfacial Layer.- 3.1. Synopsis of the Layer-by-Layer Evolution.- 3.2. Some Techniques for Studying the Stages of Interface Formation.- 4. Evolution of the Interfacial Layer.- 4.1. Stage 0: The Clean Semiconductor Surface.- 4.1.1. Silicon (100) and (111) Surfaces.- 4.1.2. GaAs (110) and GaAs (100) Surfaces.- 4.2. Stage 1: The Dilute Limit (< 1/2 Monolayer).- 4.3. Stage 2: Monolayer Formation-Metal Film Nucleation.- 4.4. Stage 3: Additional Monolayers and Interdiffusion.- 4.5. Some Specific Characteristics of the Interfacial Layers.- 5. Formation of Interface States.- 5.1. Intrinsic Interface States Derived from the Metal and Semiconductor.- 5.2. Localized Defect and Impurity Related States.- 5.3. Interface States and the Stages of Interface Formation.- 6. Case Studies of the Chemistry and Structure of Schottky Barrier Formation.- 6.1. Case Studies of Silicon Schottky Barriers.- 6.1.1. Al, Ag, Cu, and Au Schottky Barriers.- 6.1.2. Silicide-Silicon Interfaces.- 6.2. Case Studies of III-V and II-VI Compound Semiconductor Schottky Barriers.- 6.2.1. The Ga-Al-As System.- 6.2.2. The GaAlAs Ternary System with Au Schottky Barriers.- 6.2.3. InP.- 6.2.4. Some II-VI Examples.- 7. Summary.- References.- 3. Fabrication and Characterization of Metal-Semiconductor Schottky Barrier Junctions.- 1. Introduction.- 2. Selection of Semiconductor Materials.- 3. Metal-Semiconductor Systems.- 3.1. Metal-Silicon Systems.- 3.2. Metal-GaAs Systems.- 3.3. Multilayer Metallization Systems.- 4. Design Considerations.- 5. Fabrication Technology.- 5.1. Surface Processing.- 5.2. Dielectric Film Deposition.- 5.3. Ohmic Contact Formation.- 5.4. Metal Deposition.- 5.5. Other Steps.- 6. Characterization.- References.- 4. Schottky-Barrier-Type Optoelectronic Structures.- 1. Introduction.- 2. Barrier Formation in Schottky-Barrier-Type Junctions.- 3. Transport in Schottky-Barrier-Type Structures.- 3.1. MS and MIS Structures.- 3.2. SIS Structures.- 4. Schottky-Barrier-Type Optoelectronic Structures.- 4.1. Schottky-Barrier-Type Light-Emitting Structures.- 4.2. Schottky-Barrier-Type Photodiodes.- 4.3. Schottky-Barrier-Type Photovoltaic Devices.- 4.3.1. MS and MIS Photovoltaic Devices.- 4.3.2. SIS Photovoltaic Devices.- 3. Summary.- References.- 5. Schottky Barrier Photodiodes.- 1. Introduction.- 2. General Parameters of Photodiodes.- 2.1. Signal-to-Noise Ratio (S/N).- 2.2. Noise Equivalent Power (NEP).- 2.3. Detectivity (D).- 2.4. Normalized Detectivity (D*).- 2.5. Detectivity Normalized Also with Respect to the Field of View(D**).- 2.6. Resistance Area Product.- 2.7. Response Time.- 3. Selection of Materials.- 3.1. Metal Systems.- 3.2. Semiconducting Materials.- 4. Fabrication Technology.- 5. Techniques for Evaluating Device Parameters.- 5.1. Current-Voltage Characteristics.- 5.2. Capacitance-Voltage Characteristics.- 5.3. Photoelectric Measurements.- 5.4. Electron Beam Induced Current Technique.- 6. Applications.- 7. Conclusions.- References.- 6. Microwave Schottky Barrier Diodes.- 1. Introduction.- 2. Diode Design Considerations.- 2.1. Equivalent Circuit.- 2.2. Frequency Conversion.- 2.3. Basic Mixer Diode RF Parameters.- 2.3.1. Conversion Loss Theory.- 2.3.2. Noise-Temperature Ratio.- 2.3.3. Overall Receiver Noise Figure.- 2.3.4. Mixer Noise Temperature.- 2.3.5. RF Impedance.- 2.3.6. IF Impedance.- 2.3.7. Receiver Sensitivity.- 2.3.8. Doppler Shift.- 2.3.9. Typical Doppler Radar System.- 2.4. Basic Detector RF Parameters.- 2.4.1. Video Resistance (Rv).- 2.4.2. Voltage Sensitivity.- 2.4.3. Current Sensitivity ?.- 2.4.4. Minimum Detectable Signal (MDS).- 2.4.5. Tangential Signal Sensitivity (TSS).- 2.4.6. Nominal Detectable Signal (NDS).- 2.4.7. Noise Equivalent Power (NEP).- 2.4.8. Video Bandwidth.- 2.4.9. Superheterodyne vs. Single Detection.- 2.5. Mixer Configurations.- 2.5.1. Single-Ended Mixer.- 2.5.2. Single-Balanced Mixer.- 2.5.3. Double-Balanced Mixer.- 2.5.4. Image Rejection Mixer.- 2.5.5. Image Enhanced or Image Recovery Mixer.- 3. Properties of Schottky Barrier Diodes.- 3.1. Diode Theory.- 3.2. DC Parameters.- 3.2.1. Junction Capacitance.- 3.2.2. Overlay Capacitance.- 3.2.3. Series Resistance.- 3.2.4. Figure of Merit.- 3.3. Semiconductor Materials.- 3.4. Epitaxial GaAs.- 3.5. Barrier Height Lowering.- 3.6. Fabrication.- 4. Microwave Performance.- 4.1. Mixer Diodes.- 4.2. Detector Diodes.- 5. RF Pulse and CW Burnout.- 5.1. Introduction.- 5.2. Factors Affecting RF Burnout.- 5.3. Experimental Results.- 5.4. Physical Analysis of RF Pulsed Silicon Schottky Barrier Failed Diodes.- 5.5. Physical Analysis of RF Pulsed Millimeter GaAs Schottky Barrier Failed Diodes.- 5.6. Electrostatic Failure of Silicon Schottky Barrier Diodes.- 6. Conclusions.- References.- 7. Metal-Semiconductor Field Effect Transistors.- 1. Introduction.- 2. Small-Signal FET Theory.- 3. Design Parameters of a Low-Noise Device.- 4. Practical Small-Signal FET Fabrication Techniques.- 4.1. Material Growth Techniques.- 4.2. FET Fabrication Technology.- 5. GaAs Power Field Effect Transistors.- 5.1. Principle of Power FET Operation.- 5.2. Thermal Impedance.- 5.3. Power FET Technology.- 6. Conclusions.- References.- 8. Schottky Barrier Gate Charge-Coupled Devices.- 1. Introduction.- 2. Schottky Gate CCDs.- 3. Potential-Charge Relationships.- 3.1. Surface Channel CCD.- 3.2. Bulk Channel CCD.- 3.3. Schottky Gate CCD.- 4. Charge Storage Capacity.- 4.1. Surface Channel CCD.- 4.2. Bulk Channel CCD.- 4.3. Schottky Gate CCD.- 5. Charge Transfer.- 5.1. Charge Transfer Efficiency.- 5.2. Charge Transfer Mechanisms.- 5.2.1. Surface Channel CCD.- 5.2.2. Bulk Channel CCD.- 5.2.3. Schottky Gate CCD.- 6. Input-Output Circuits.- 7. Schottky Gate Heterojunction CCDs.- 8. Experimental Results.- 8.1. High-Frequency Devices.- 8.2. Heterojunction Devices.- 9. Applications.- References.- 9. Schottky Barriers on Amorphous Si and their Applications.- 1. Introduction.- 2. Properties of Amorphous Si.- 2.1. Deposition Methods.- 2.2. Structural Properties.- 2.3. Electronic Properties.- 2.4. Surfaces.- 3. The Schottky Barrier on ?-Si:H.- 3.1. Current-Voltage Measurements.- 3.2. Capacitance Measurements.- 3.3 Internal Photoemission.- 4. Interface Kinetics and Its Effect on the Schottky Barrier.- 5. Applications.- 5.1. Drift Mobility.- 5.2. Deep Level Transient Spectroscopy.- 5.3. Solar Cells.- 5.4. Thin Film Transistors.- 6. Concluding Remarks.- References.

read more

Citations
More filters
Journal ArticleDOI

Surface photovoltage phenomena: theory, experiment, and applications

TL;DR: The theoretical concepts, experimental tools, and applications of surface photovoltage (SPV) techniques are reviewed in detail in detail as discussed by the authors, where the theoretical discussion is divided into two sections: electrical properties of semiconductor surfaces and the second discusses SPV phenomena.
Journal ArticleDOI

Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials

TL;DR: Key advances in the application of 2D materials, from both a historical and analytical perspective, are summarized for four different groups of analytes: gases, volatile compounds, ions, and biomolecules.
Journal ArticleDOI

Graphene-based heterojunction photocatalysts

TL;DR: In this article, the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene-based heterojunction photocatalysts, and classification and comparison of them are discussed.
Journal ArticleDOI

ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes.

TL;DR: Rectifying diodes of single nanobelt/nanowire-based devices have been fabricated by aligning single ZnO nanobelts/ nanowires across paired Au electrodes using dielectrophoresis to form the Schottky diode.
Journal ArticleDOI

Metal contacts to gallium nitride

TL;DR: In this paper, the authors report measurements on the nature of aluminum and gold contacts to GaN and find a direct correlation between barrier height and work function of the metal, consistent with the strong ionic character of GaN.