scispace - formally typeset
Journal ArticleDOI

Metallized tip amplification of near-field Raman scattering

TLDR
In this paper, the amplification of near-field Raman scattering by using an apertureless near field scanning optical microscope the tip of which is a 40 nm silver-layer-coated cantilever of an atomic force microscope was observed.
About
This article is published in Optics Communications.The article was published on 2000-09-01. It has received 608 citations till now. The article focuses on the topics: Raman spectroscopy & Raman scattering.

read more

Citations
More filters
Journal ArticleDOI

Present and Future of Surface-Enhanced Raman Scattering

Judith Langer, +64 more
- 28 Jan 2020 - 
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Journal ArticleDOI

Chemical mapping of a single molecule by plasmon-enhanced Raman scattering

TL;DR: Raman spectral imaging with spatial resolution below one nanometre is demonstrated, resolving the inner structure and surface configuration of a single molecule by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons.
Journal ArticleDOI

Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

TL;DR: A review of the plasmon-enhanced Raman spectroscopy (PERS) field can be found in this paper, where a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials are discussed.
Journal ArticleDOI

Surface-enhanced Raman scattering and biophysics

TL;DR: Surface-enhanced Raman scattering (SERS) is a spectroscopic technique which combines modern laser spectroscopy with the exciting optical properties of metallic nanostructures, resulting in strongly increased Raman signals when molecules are attached to nanometre-sized gold and silver structures.
Journal ArticleDOI

Electromagnetic theories of surface-enhanced Raman spectroscopy

TL;DR: This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to the current understanding of surface-plasmon (SP) resonances in the nanostructured conductor.
References
More filters
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Journal ArticleDOI

Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering

TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Journal ArticleDOI

Single molecules observed by near-field scanning optical microscopy.

TL;DR: Individual carbocyanine dye molecules in a sub-monolayer spread have been imaged with near-field scanning optical microscopy and the orientation of each molecular dipole can be determined to map the electric field distribution in the near- field aperture with molecular spatial resolution.
Journal ArticleDOI

Near-field probing of vibrational absorption for chemical microscopy

TL;DR: In this article, the authors demonstrate the use of the apertureless approach to scan near field optical microscopy to obtain contrast in vibrational absorption on a scale of about 100 nanometres, about one-hundredth of a wavelength.
Journal ArticleDOI

Near-Field Fluorescence Microscopy Based on Two-Photon Excitation with Metal Tips

TL;DR: In this article, a near-field fluorescence imaging using femtosecond laser pulses of proper polarization is presented. But the technique is not suitable for near field imaging, and the spatial resolution is limited to 20 nm.
Related Papers (5)