scispace - formally typeset
Journal ArticleDOI

Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries

Reads0
Chats0
TLDR
In this paper, a Si-C nanocomposites (e.g., nanowires, nanotubes, or nanoparticles) has been used to improve the capacity and cycling stability of high-energy-density lithium-ion batteries.
Abstract
The emerging markets of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities and long cycling life. [ 1–4 ] The development of such LIBs requires development of low cost, high energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ∼ 370 mAh/g. [ 5 ] Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and PHEV applications. Silicon has been intensively pursued as the most promising anode material for high-energy-density LIBs because of its high specifi c capacity ( > 3500 mAh/g) and abundance. [ 6 ] Despite its high capacity, Si suffers from fast capacity fading caused by its large volume change ( > 300%) during lithiation/delithiation and the serious issues stemming from this volume change, e.g., unstable solid electrolyte interphase (SEI) and disintegration (cracking and crumbling) of the electrode structure. [ 7 , 8 ] The development of Si-C nanocomposites (e.g., nanowires, nanotubes, or nanoparticles) has been widely studied. [ 9–18 ] These nanocomposites proved to be an effective method of improving capacity and cycling stability, since nano-sized Si can alleviate fracture during volume changes and the contact between Si and carbon can maintain electrical contact and improve conductivity of the nanocomposites. However, practical application of nano-sized Si materials in LIBs is diffi cult. First, achieving a high tap density is important for fabrication of high-energy LIBs for EVs and PHEVs, because it offers a high volumetric energy density. Unfortunately, the tap density of nano-sized materials is generally low, which in turn holds down their volumetric capacity. [ 19 ] Furthermore, preparation of nano-sized Si either requires chemical/physical vapor deposition or involves complicated processes, leading to costly, low-yield synthesis that is diffi cult to scale up to practical levels. [ 20–22 ] To date, the abundance of Si has not been fully capitalized upon due to lack

read more

Citations
More filters
Journal ArticleDOI

Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles

TL;DR: In this article, the authors describe the nano-energy system models of different electrode structures and the failure characterization mechanisms during the process of charging and discharging of Li-ion battery electrodes.
Journal ArticleDOI

High-Areal-Capacity of Micron-Sized Silicon Anodes in Lithium-Ion Batteries by Using Wrinkled-Multilayered-Graphenes

TL;DR: In this article , the wrinkled-multilayered-graphenes (Si-WMGs) were used as binder and conductor free electrodes for high-energy-density Li-ion batteries.
Journal ArticleDOI

Advances in in situ techniques for characterization of failure mechanisms of Li-ion battery anodes

TL;DR: In this paper, in situ characterization techniques can be adopted to understand material failure mechanisms in Li-ion battery with a focus on failure and degradation of negative electrode materials, which leads to early capacity decay and safety issues.
Journal ArticleDOI

Sandwich electrode designed for high performance lithium-ion battery

TL;DR: A sandwich structure Li-ion battery electrode is fabricated by trapping micron-sized silicon between a copper current collector and a graphene coating to effectively prevent the silicon particles from escaping from the current collector while keeping the buffered graphene coating integrated and unbroken during deformation.

(Invited) Design of Porous Si/C-Graphite Electrodes with Long Cycle Stability and Controlled Swelling

TL;DR: In this paper, a porous Si/C-graphite electrode was used as an example to elucidate the design principle for stable Si-based anodes of controlled thickness swelling, and the results showed that the initial electrode swelling upon full lithiation is 84% capacity retention over 300 cycles.
References
More filters
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Journal ArticleDOI

Nanostructured materials for advanced energy conversion and storage devices

TL;DR: This review describes some recent developments in the discovery of nanoelectrolytes and nanoeLECTrodes for lithium batteries, fuel cells and supercapacitors and the advantages and disadvantages of the nanoscale in materials design for such devices.
Journal ArticleDOI

High-performance lithium battery anodes using silicon nanowires

TL;DR: The theoretical charge capacity for silicon nanowire battery electrodes is achieved and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.
Journal ArticleDOI

Lithium Batteries and Cathode Materials

TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Journal ArticleDOI

Battery materials for ultrafast charging and discharging

TL;DR: It is shown that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors.
Related Papers (5)