scispace - formally typeset
Journal ArticleDOI

Microfibre–nanowire hybrid structure for energy scavenging

Yong Qin, +2 more
- 14 Feb 2008 - 
- Vol. 451, Iss: 7180, pp 809-813
TLDR
This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics and presents a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres.
Abstract
Nanodevices don't use much energy, and if the little they do need can be scavenged from vibrations associated with foot steps, heart beats, noises and air flow, a whole range of applications in personal electronics, sensing and defence technologies opens up. Energy gathering of that type requires a technology that works at low frequency range (below 10 Hz), ideally based on soft, flexible materials. A group working at Georgia Institute of Technology has now come up with a system that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing their associated nanowires together, mechanical energy is converted into electricity via a coupled piezoelectric-semiconductor process. This work shows a potential method for creating fabrics which scavenge energy from light winds and body movement. A self-powering nanosystem that harvests its operating energy from the environment is an attractive proposition for sensing, personal electronics and defence technologies1. This is in principle feasible for nanodevices owing to their extremely low power consumption2,3,4,5. Solar, thermal and mechanical (wind, friction, body movement) energies are common and may be scavenged from the environment, but the type of energy source to be chosen has to be decided on the basis of specific applications. Military sensing/surveillance node placement, for example, may involve difficult-to-reach locations, may need to be hidden, and may be in environments that are dusty, rainy, dark and/or in deep forest. In a moving vehicle or aeroplane, harvesting energy from a rotating tyre or wind blowing on the body is a possible choice to power wireless devices implanted in the surface of the vehicle. Nanowire nanogenerators built on hard substrates were demonstrated for harvesting local mechanical energy produced by high-frequency ultrasonic waves6,7. To harvest the energy from vibration or disturbance originating from footsteps, heartbeats, ambient noise and air flow, it is important to explore innovative technologies that work at low frequencies (such as <10 Hz) and that are based on flexible soft materials. Here we present a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing the nanowires rooted on them with respect to each other, mechanical energy is converted into electricity owing to a coupled piezoelectric–semiconductor process8,9. This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics.

read more

Citations
More filters
Journal ArticleDOI

Single-Molecule Piezoelectric Deformation: Rational Design from First-Principles Calculations

TL;DR: In this article, a computational investigation using density functional theory (DFT) calculations of single-molecule piezoelectric materials was performed, showing that these molecular springs, derivatives of [6]helicene and phenanthrene, change conformation in response to an applied external electric field, frequently deforming at grain boundaries in addition to intrinsic unit cell changes.
Journal ArticleDOI

Probe-Molecule-Assisted NMR Spectroscopy: A Comparison with Photoluminescence and Electron Paramagnetic Resonance Spectroscopy as a Characterization Tool in Facet-Specific Photocatalysis

TL;DR: In this article, the authors used the chemical adsorption of a 31P-containing probe molecule to obtain the distribution/concentration of VO surface as well as other surface features (hydroxyl groups) of ZnO by using 31P magic-angle spinning NMR spectroscopy.
Journal ArticleDOI

A highly torsionable fiber-shaped supercapacitor

TL;DR: In this article, a fiber-shaped flexible supercapacitor that is highly stable under torsional deformations, with a very small capacitance variation around its average value (<±2%) even under severe twisting.
Journal ArticleDOI

Functional Fiber Materials to Smart Fiber Devices.

TL;DR: The development of fiber materials has accompanied the evolution of human civilization for centuries as discussed by the authors , and recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing.
Journal ArticleDOI

Electrochemical Detection of Piezoelectric Effect from Misaligned Zinc Oxide Nanowires Grown on a Flexible Electrode

TL;DR: In this paper, the piezoelectric effect from a packed layer of zinc oxide nanowires (ZnO NWs) was used in an electrochemical device for energy harvesting.
References
More filters
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Ballistic carbon nanotube field-effect transistors

TL;DR: It is shown that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotube, greatly reduces or eliminates the barriers for transport through the valence band of nanot tubes.
Journal ArticleDOI

Coaxial silicon nanowires as solar cells and nanoelectronic power sources

TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Journal ArticleDOI

Energy scavenging for mobile and wireless electronics

TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Journal ArticleDOI

Direct-current nanogenerator driven by ultrasonic waves

TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Related Papers (5)