scispace - formally typeset
Journal ArticleDOI

Microfibre–nanowire hybrid structure for energy scavenging

Yong Qin, +2 more
- 14 Feb 2008 - 
- Vol. 451, Iss: 7180, pp 809-813
TLDR
This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics and presents a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres.
Abstract
Nanodevices don't use much energy, and if the little they do need can be scavenged from vibrations associated with foot steps, heart beats, noises and air flow, a whole range of applications in personal electronics, sensing and defence technologies opens up. Energy gathering of that type requires a technology that works at low frequency range (below 10 Hz), ideally based on soft, flexible materials. A group working at Georgia Institute of Technology has now come up with a system that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing their associated nanowires together, mechanical energy is converted into electricity via a coupled piezoelectric-semiconductor process. This work shows a potential method for creating fabrics which scavenge energy from light winds and body movement. A self-powering nanosystem that harvests its operating energy from the environment is an attractive proposition for sensing, personal electronics and defence technologies1. This is in principle feasible for nanodevices owing to their extremely low power consumption2,3,4,5. Solar, thermal and mechanical (wind, friction, body movement) energies are common and may be scavenged from the environment, but the type of energy source to be chosen has to be decided on the basis of specific applications. Military sensing/surveillance node placement, for example, may involve difficult-to-reach locations, may need to be hidden, and may be in environments that are dusty, rainy, dark and/or in deep forest. In a moving vehicle or aeroplane, harvesting energy from a rotating tyre or wind blowing on the body is a possible choice to power wireless devices implanted in the surface of the vehicle. Nanowire nanogenerators built on hard substrates were demonstrated for harvesting local mechanical energy produced by high-frequency ultrasonic waves6,7. To harvest the energy from vibration or disturbance originating from footsteps, heartbeats, ambient noise and air flow, it is important to explore innovative technologies that work at low frequencies (such as <10 Hz) and that are based on flexible soft materials. Here we present a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing the nanowires rooted on them with respect to each other, mechanical energy is converted into electricity owing to a coupled piezoelectric–semiconductor process8,9. This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics.

read more

Citations
More filters
Journal ArticleDOI

Graphene-Piezoelectric Material Heterostructure for Harvesting Energy from Water Flow

TL;DR: In this article, a graphene-piezoelectric material heterostructure is proposed for harvesting energy from water flow; it is shown that the introduction of a piezolectric template beneath graphene results in an obvious voltage output up to 0.1 V even with deionized (DI) water.
Journal ArticleDOI

Sodium Niobate Nanowire and Its Piezoelectricity

TL;DR: In this paper, the first report of the preparation of NaNbO3 nanowires as well as the determination of piezoelectricity was presented, which was confirmed by piezoresponse force microscopy.
Journal Article

Performance Optimization of Vertical Nanowire-Based Piezoelectric Nanogenerators

TL;DR: In this paper, the mechanical and electrical structures of the integrated nanogenerator as an integrated system are optimized, and strategies for concentrating the mechanical strain field in the vertical nanowire arrays and increasing the force sensitivity are developed.
Journal ArticleDOI

Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications

TL;DR: In this article, a detailed description of the piezophotonics effect including its theoretical fundamental and practical applications is given, and a detailed analysis of the effect in doped ZnS CaZnOS, SrAl2O4 and LiNbO3 is presented.
Journal ArticleDOI

Wireless Monitoring of Automobile Tires for Intelligent Tires

TL;DR: This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission, including indirect methods using existing sensors, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors.
References
More filters
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Ballistic carbon nanotube field-effect transistors

TL;DR: It is shown that contacting semiconducting single-walled nanotubes by palladium, a noble metal with high work function and good wetting interactions with nanotube, greatly reduces or eliminates the barriers for transport through the valence band of nanot tubes.
Journal ArticleDOI

Coaxial silicon nanowires as solar cells and nanoelectronic power sources

TL;DR: These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.
Journal ArticleDOI

Energy scavenging for mobile and wireless electronics

TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Journal ArticleDOI

Direct-current nanogenerator driven by ultrasonic waves

TL;DR: A nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output and offers a potential solution for powering nanodevices and nanosystems.
Related Papers (5)