scispace - formally typeset
Open AccessJournal ArticleDOI

Misfolded CuZnSOD and amyotrophic lateral sclerosis.

Reads0
Chats0
TLDR
Some of the properties of both wild-type and mutant CuZnSOD proteins are reviewed, suggests how these properties may be relevant to these two hypotheses, and proposes that these two hypothesis are not necessarily mutually exclusive.
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease of motor neurons. The inherited form of the disease, familial ALS, represents 5–10% of the total cases, and the best documented of these are due to lesions in SOD1, the gene encoding copper–zinc superoxide dismutase (CuZnSOD). The mechanism by which mutations in SOD1 cause familial ALS is currently unknown. Two hypotheses have dominated recent discussion of the toxicity of ALS mutant CuZnSOD proteins: the oligomerization hypothesis and the oxidative damage hypothesis. The oligomerization hypothesis maintains that mutant CuZnSOD proteins are, or become, misfolded and consequently oligomerize into increasingly high-molecular-weight species that ultimately lead to the death of motor neurons. The oxidative damage hypothesis maintains that ALS mutant CuZnSOD proteins catalyze oxidative reactions that damage substrates critical for viability of the affected cells. This perspective reviews some of the properties of both wild-type and mutant CuZnSOD proteins, suggests how these properties may be relevant to these two hypotheses, and proposes that these two hypotheses are not necessarily mutually exclusive.

read more

Citations
More filters
Journal ArticleDOI

Mitochondrial formation of reactive oxygen species.

TL;DR: This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments and discusses various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.
Journal ArticleDOI

Neurodegenerative diseases and oxidative stress.

TL;DR: Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and different strategies, including novel metal–protein attenuating compounds aimed at a variety of targets have shown promise in clinical studies.
Journal ArticleDOI

Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options.

TL;DR: Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging.
Journal ArticleDOI

Luminescent chemodosimeters for bioimaging.

TL;DR: Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China.
References
More filters
Journal ArticleDOI

Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis

TL;DR: Tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 is reported.
Journal ArticleDOI

Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.

TL;DR: In this article, the authors found that mutations of human Cu,Zn superoxide dismutase (SOD) contribute to the pathogenesis of familial amyotrophic lateral sclerosis (ALS).
Journal ArticleDOI

Aggresomes: A Cellular Response to Misfolded Proteins

TL;DR: The intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR) is investigated and it is demonstrated that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which is termed the aggresome.
Journal ArticleDOI

An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria

TL;DR: Mutations in Cu/Zn superoxide dismutase cause a subset of cases of familial amyotrophic lateral sclerosis, and four lines of mice accumulating one of these mutant proteins (G37R) develop severe, progressive motor neuron disease.
Related Papers (5)