scispace - formally typeset
Open AccessJournal ArticleDOI

Mode-locked silicon evanescent lasers.

TLDR
Electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multipleXing (WDM), and optical code division multiple access (OCDMA).
Abstract
We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

read more

Citations
More filters
Journal ArticleDOI

Silicon microring resonators

TL;DR: An overview of the current state-of-the-art in silicon nanophotonic ring resonators is presented in this paper, where the basic theory of ring resonance is discussed and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes.
Journal ArticleDOI

All-optical high-speed signal processing with silicon–organic hybrid slot waveguides

TL;DR: In this paper, a silicon-organic hybrid slot waveguide with a strong optical nonlinearity is demonstrated to perform ultrafast all-optical demultiplexing of high-bit-rate data streams.
Journal ArticleDOI

Rapid and precise absolute distance measurements at long range

TL;DR: In this paper, the authors demonstrate a coherent laser ranging system that combines the advantages of time-of-flight and interferometric approaches to provide absolute distance measurements, simultaneously from multiple reflectors, and at low power.
Journal ArticleDOI

Corona: System Implications of Emerging Nanophotonic Technology

TL;DR: This work believes that in comparison with an electrically-connected many-core alternative that uses the same on-stack interconnect power, Corona can provide 2 to 6 times more performance on many memory intensive workloads, while simultaneously reducing power.
Journal ArticleDOI

III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects

TL;DR: In this paper, two bonding technologies are used to realize the III-V/SOI integration: one based on molecular wafer bonding and the other based on DVS-BCB adhesive wafer-bonding.
References
More filters
Journal ArticleDOI

The Past, Present, and Future of Silicon Photonics

TL;DR: In this paper, the state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA).
Journal Article

Silicon photonics

TL;DR: The silicon chip has been the mainstay of the electronics industry for the last 40 years and has revolutionized the way the world operates as mentioned in this paper, however, any optical solution must be based on low-cost technologies if it is to be applied to the mass market.
Journal ArticleDOI

A continuous-wave Raman silicon laser

TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Journal ArticleDOI

Electrically pumped hybrid AlGaInAs-silicon evanescent laser

TL;DR: An electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding is reported.
Journal ArticleDOI

12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators

TL;DR: A scheme for achieving high-speed operation for carrier-injection based silicon electro-optical modulator, which is optimized for small size and high modulation depth is shown.
Related Papers (5)