scispace - formally typeset
Journal ArticleDOI

Modeling Nonresonant X-ray Emission of Second- and Third-Period Elements without Core-Hole Reference States and Empirical Parameters.

Bibek Samal, +1 more
- 09 Nov 2022 - 
- Vol. 18, Iss: 12, pp 7272-7285
TLDR
In this article , a scalar relativistic (sr) generalized Kohn-Sham semi-canonical projected random phase approximation (GKS-spRPA) method was proposed to estimate X-ray emission (XE) energies and oscillator strengths.
Abstract
Nonresonant X-ray emission (XE) energies and oscillator strengths are obtained using the effective potential of the generalized Kohn-Sham semi-canonical projected random phase approximation (GKS-spRPA) method. XE energies are estimated as a difference between the valence and core ionization eigenvalues, while the oscillator strengths are obtained within a frozen orbital approximation. This straightforward approach provides accurate XE energies without any need for core-hole reference states, empirical shifting parameters, or tuning of density functionals. To account for relativistic corrections to the core orbitals, we have formulated a scalar relativistic (sr) GKS-spRPA approach based on the spin-free X2C one-electron Hamiltonian. The sr-GKS-spRPA method provides highly reliable XE energies using uncontracted basis-sets on atoms where the core-hole is created prior to emission. For the largest basis-sets used in our study, using completely uncontracted polarized core-valence Dunning basis-sets, the mean absolute errors (MAEs) are within 0.7 eV compared to experimental reference values for a test-set consisting of 27 valence-to-core XE energies of molecules with second- and third-period elements. Considering a balance of accuracy and computational effort, we recommend the use of s-uncontracted def2-TZVP for second-period and all-uncontracted def2-TZVP for third-period elements. For this recommended basis-set, the MAE is 0.2 eV. The analytically continued sr-GKS-spRPA approach, with an O(N4) computational cost, enables efficient computation of XE spectra of molecules such as S8 and C60 with several core-hole states.

read more

Content maybe subject to copyright    Report

Citations
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Density-functional exchange-energy approximation with correct asymptotic behavior.

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Journal ArticleDOI

Inhomogeneous Electron Gas

TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Related Papers (5)