scispace - formally typeset
Journal ArticleDOI

Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease

TLDR
Experimental results indicate that MM-SDPN is superior over the state-of-the-art multimodal feature-learning-based algorithms for AD diagnosis.
Abstract
The accurate diagnosis of Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment, is essential for timely treatment and possible delay of AD. Fusion of multimodal neuroimaging data, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), has shown its effectiveness for AD diagnosis. The deep polynomial networks (DPN) is a recently proposed deep learning algorithm, which performs well on both large-scale and small-size datasets. In this study, a multimodal stacked DPN (MM-SDPN) algorithm, which MM-SDPN consists of two-stage SDPNs, is proposed to fuse and learn feature representation from multimodal neuroimaging data for AD diagnosis. Specifically speaking, two SDPNs are first used to learn high-level features of MRI and PET, respectively, which are then fed to another SDPN to fuse multimodal neuroimaging information. The proposed MM-SDPN algorithm is applied to the ADNI dataset to conduct both binary classification and multiclass classification tasks. Experimental results indicate that MM-SDPN is superior over the state-of-the-art multimodal feature-learning-based algorithms for AD diagnosis.

read more

Citations
More filters
Journal ArticleDOI

A survey on deep learning in medical image analysis

TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.
Journal ArticleDOI

Applications of Deep Learning and Reinforcement Learning to Biological Data

TL;DR: This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data and compares the performances of DL techniques when applied to different data sets across various application domains.
Journal ArticleDOI

Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation.

TL;DR: The open-source framework for classification of AD using CNN and T1-weighted MRI is extended and found that more than half of the surveyed papers may have suffered from data leakage and thus reported biased performance.
Journal ArticleDOI

Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI

TL;DR: A hierarchical fully convolutional network (H-FCN) is proposed to automatically identify discriminative local patches and regions in the whole brain sMRI, upon which multi-scale feature representations are then jointly learned and fused to construct hierarchical classification models for AD diagnosis.
Proceedings ArticleDOI

Thoracic Disease Identification and Localization with Limited Supervision

TL;DR: In this article, a unified approach that simultaneously performs disease identification and localization through the same underlying model for all images is presented, which can effectively leverage both class information as well as limited location annotation.
References
More filters
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Journal ArticleDOI

Clinical diagnosis of Alzheimer's disease : report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease

TL;DR: The criteria proposed are intended to serve as a guide for the diagnosis of probable, possible, and definite Alzheimer's disease; these criteria will be revised as more definitive information becomes available.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Related Papers (5)