scispace - formally typeset
Journal ArticleDOI

Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry.

Reads0
Chats0
TLDR
The novel synthesis of tetrahedrite copper antimony sulfide (CAS) nanocrystals (Cu12Sb4S13), which display strong absorptions in the visible and NIR, are presented, an excellent new candidate for both thin film and hybrid solar cells and as strong NIR absorbers in general.
Abstract
Herein, we present the novel synthesis of tetrahedrite copper antimony sulfide (CAS) nanocrystals (Cu12Sb4S13), which display strong absorptions in the visible and NIR. Through ligand tuning, the size of the Cu12Sb4S13 NCs may be increased from 6 to 18 nm. Phase purity is achieved through optimizing the ligand chemistry and maximizing the reactivity of the antimony precursor. We provide a detailed investigation of the optical and photoelectrical properties of both tetrahedrite (Cu12Sb4S13) and famatinite (Cu3SbS4) NCs. These NCs were found to have very high absorption coefficients reaching 105 cm–1 and band gaps of 1.7 and 1 eV for tetrahedrite and famatinite NCs, respectively. Ultraviolet photoelectron spectroscopy was employed to determine the band positions. In each case, the Fermi energies reside close to the valence band, indicative of a p-type semiconductor. Annealing of tetrahedrite CAS NC films in sulfur vapor at 350 °C was found to result in pure famatinite NC films, opening the possibility to tu...

read more

Citations
More filters
Journal ArticleDOI

Compound Copper Chalcogenide Nanocrystals

TL;DR: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility.
Journal ArticleDOI

Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

TL;DR: This work reviews the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds and a comprehensive overview on toxicity studies concerning all types of quantum dots.
Journal ArticleDOI

Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials

TL;DR: In this article, a review of recent efforts targeting accurate identification and engineering of anti-site disorder in kesterite-based CZTSSe are considered, in an effort to develop promising pathways to avoid antisite disordering and associated band tailing in future highperformance earth-abundant photovoltaic technologies.
Journal ArticleDOI

Solar light harvesting with multinary metal chalcogenide nanocrystals

TL;DR: The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems.
References
More filters
Journal ArticleDOI

Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

TL;DR: Biesinger et al. as mentioned in this paper proposed a more consistent and effective approach to curve fitting based on a combination of standard spectra from quality reference samples, a survey of appropriate literature databases and/or a compilation of literature references and specific literature references where fitting procedures are available.
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Journal ArticleDOI

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

TL;DR: In this paper, three major ways to utilize semiconductor dots in solar cell include (i) metal−semiconductor or Schottky junction photovoltaic cell, (ii) polymer−smiconductor hybrid solar cell, and (iii) quantum dot sensitized solar cell.
Journal ArticleDOI

Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution

TL;DR: An ultrathin donor-acceptor solar cell composed entirely of inorganic nanocrystals spin-cast from solution is introduced, elucidates a class of photovoltaic devices with potential for stable, low-cost power generation.
Related Papers (5)