scispace - formally typeset
Journal ArticleDOI

Nearly incompressible fluids. II - Magnetohydrodynamics, turbulence, and waves

TLDR
The theory of nearly incompressible (NI) fluid dynamics has been extended to magnetohydrodynamics in this article, where the effects of compressibility are admitted only weakly in terms of the different possible solutions.
Abstract
The theory of nearly incompressible (NI) fluid dynamics developed previously for hydrodynamics is extended to magnetohydrodynamics (MHD). On the basis of a singular expansion technique, modified systems of fluid equations are derived for which the effects of compressibility are admitted only weakly in terms of the different possible incompressible solutions (thus ‘‘nearly incompressible MHD’’). NI MHD represents the interface between the compressible and incompressible magnetofluid descriptions in the subsonic regime. The theory developed here does not hold in the presence of very large thermal, gravitational, or field gradients. It is found that there exist three distinct NI descriptions corresponding to each of the three possible plasma beta (β ≡ the ratio of thermal to magnetic pressure) regimes (β≪1, β∼1, β≫1). In the β≫1 regime, the compressible MHD description converges in the low Mach number limit to the equations of classical incompressible three‐dimensional (3‐D) MHD. However, for the remaining plasma beta regimes, the imposition of a large dc magnetic field forces the equations of fully compressible 3‐D MHD to converge to the equations of 2‐D incompressible MHD in the low Mach number limit. The ‘‘collapse in dimensionality’’ corresponding to the different plasma beta regimes clarifies the distinction between the 3‐D and 2‐D incompressible MHD descriptions (and also that of 21/2‐D incompressible MHD). The collapse in dimensionality that occurs as a result of a decreased plasma beta can carry over to the weakly compressible corrections. For a β∼1 plasma, Alfven waves propagate parallel to the applied magnetic field (reminiscent of reduced MHD), while for a β≪1 magnetofluid, quasi‐1‐D long‐wavelength acoustic modes propagate parallel to the applied magnetic field. The detailed theory of weakly compressible corrections to the various incompressible MHD descriptions is presented and the implications for the solar wind emphasized.

read more

Citations
More filters
Journal ArticleDOI

The Solar Wind as a Turbulence Laboratory

TL;DR: In this paper, the authors focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state.
Journal ArticleDOI

Interstellar Turbulence I: Observations and Processes

TL;DR: In this article, a two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics, including basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structu...
Journal ArticleDOI

MHD structures, waves and turbulence in the solar wind : observations and theories

TL;DR: A comprehensive overview of recent observational and theoretical results on solar wind structures and fluctuations and magnetohydrodynamic waves and turbulence, with preference given to phenomena in the inner heliosphere, is presented in this paper.
Journal ArticleDOI

Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas

TL;DR: In this paper, a theoretical framework for understanding plasma turbulence in astrophysical plasmas is presented, motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks.
Journal ArticleDOI

Observational constraints on the dynamics of the interplanetary magnetic field dissipation range

TL;DR: In this paper, the authors examined wind observations of inertial and dissipation range spectra in an attempt to better understand the processes that form the dissipation ranges and how these processes depend on the ambient solar wind parameters (interplanetary magnetic field intensity, ambient proton density and temperature, etc.).
References
More filters
Journal ArticleDOI

On Sound Generated Aerodynamically. I. General Theory

TL;DR: In this paper, a theory for estimating the sound radiated from a fluid flow, with rigid boundaries, which as a result of instability contains regular fluctuations or turbulence is initiated, based on the equations of motion of a gas.

Waves in fluids

TL;DR: One-dimensional waves in fluids as discussed by the authors were used to describe sound waves and water waves in the literature, as well as the internal wave and the water wave in fluids, and they can be classified into three classes: sound wave, water wave, and internal wave.
Journal ArticleDOI

Large-amplitude Alfvén waves in the interplanetary medium, 2

TL;DR: In this paper, the properties of large amplitude microscale Alfven waves in interplanetary medium were investigated using plasma and magnetic field data from Mariner 5. But the results were limited to a single-dimensional image.
Journal ArticleDOI

Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity

TL;DR: In this article, a theoretical investigation of the spectrum of a turbulent fluid at large wave-numbers is presented, taking into account the two effects of convection with the fluid and molecular diffusion with diffusivity k. Hypotheses of the kind made by Kolmogoroff for the small-scale variations of velocity in a turbulent motion at high Reynolds number are assumed to apply also to small-size variations of θ.
Journal ArticleDOI

Two-dimensional turbulence

TL;DR: The theory of two-dimensional turbulence is reviewed and unified, and some hydrodynamic and plasma applications are considered in this paper, where some equations of incompressible hydrodynamics, absolute statistical equilibrium, spectral transport of energy and enstrophy, turbulence on the surface of a rotating sphere, turbulent diffusion, MHD turbulence, and two dimensional superflow are discussed.
Related Papers (5)