scispace - formally typeset
Open AccessProceedings Article

Neural Machine Translation by Jointly Learning to Align and Translate

TLDR
It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Abstract
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

read more

Citations
More filters
Proceedings ArticleDOI

DeepMove: Predicting Human Mobility with Attentional Recurrent Networks

TL;DR: In DeepMove, an attentional recurrent network for mobility prediction from lengthy and sparse trajectories, a multi-modal embedding recurrent neural network is designed to capture the complicated sequential transitions by jointly embedding the multiple factors that govern the human mobility.
Proceedings ArticleDOI

Differential Recurrent Neural Networks for Action Recognition

TL;DR: In this article, a differential recurrent neural network (dRNN) is proposed to learn complex time-series representations via high-order derivatives of states, where the change in information gain caused by the salient motions between successive frames is quantified by Derivative of States (DoS), and thus the proposed LSTM model is termed as differential RNN.
Posted Content

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks

TL;DR: The authors proposed a curriculum learning strategy to gently change the training process from a fully guided scheme using the true previous token, towards a less guided scheme which mostly uses the generated token instead.
Proceedings ArticleDOI

Scaling Neural Machine Translation

TL;DR: This paper shows that reduced precision and large batch training can speedup training by nearly 5x on a single 8-GPU machine with careful tuning and implementation.
Posted Content

DyNet: The Dynamic Neural Network Toolkit

TL;DR: DyNet is a toolkit for implementing neural network models based on dynamic declaration of network structure that has an optimized C++ backend and lightweight graph representation and is designed to allow users to implement their models in a way that is idiomatic in their preferred programming language.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings ArticleDOI

Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation

TL;DR: In this paper, the encoder and decoder of the RNN Encoder-Decoder model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Journal ArticleDOI

Bidirectional recurrent neural networks

TL;DR: It is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution.
Journal ArticleDOI

A neural probabilistic language model

TL;DR: The authors propose to learn a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences, which can be expressed in terms of these representations.