scispace - formally typeset
Open AccessProceedings Article

Neural Machine Translation by Jointly Learning to Align and Translate

TLDR
It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Abstract
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

read more

Citations
More filters
Proceedings Article

Tensor2Tensor for Neural Machine Translation

TL;DR: Tensor2Tensor as mentioned in this paper is a library for deep learning models that is well-suited for neural machine translation and includes the reference implementation of the state-of-the-art Transformer model.
Posted Content

Sharp Minima Can Generalize For Deep Nets

TL;DR: It is argued that most notions of flatness are problematic for deep models and can not be directly applied to explain generalization, and when focusing on deep networks with rectifier units, the particular geometry of parameter space induced by the inherent symmetries that these architectures exhibit is exploited.
Posted Content

QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension

TL;DR: QANet as mentioned in this paper uses convolutional and self-attention encoder for reading and question answering tasks, and achieves state-of-the-art performance on the SQuAD dataset.
Book ChapterDOI

Objects that Sound

TL;DR: New network architectures are designed that can be trained using the AVC task for these functionalities: for cross-modal retrieval, and for localizing the source of a sound in an image.
Journal ArticleDOI

Region Attention Networks for Pose and Occlusion Robust Facial Expression Recognition

TL;DR: Zhang et al. as mentioned in this paper proposed a region attention network (RAN) to adaptively capture the importance of facial regions for occlusion and pose variant FER by aggregating and embedding varied number of region features produced by a backbone convolutional neural network into a compact fixed-length representation.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings ArticleDOI

Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation

TL;DR: In this paper, the encoder and decoder of the RNN Encoder-Decoder model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Journal ArticleDOI

Bidirectional recurrent neural networks

TL;DR: It is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution.
Journal ArticleDOI

A neural probabilistic language model

TL;DR: The authors propose to learn a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences, which can be expressed in terms of these representations.