scispace - formally typeset
Open AccessProceedings Article

Neural Machine Translation by Jointly Learning to Align and Translate

TLDR
It is conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and it is proposed to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly.
Abstract
Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

read more

Citations
More filters
Proceedings ArticleDOI

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis

TL;DR: In this paper, a unified four-stage scene text recognition (STR) framework is introduced to compare the performance of different models. But, the performance gap results from inconsistencies in the training and evaluation datasets.
Proceedings ArticleDOI

Learning Natural Language Inference with LSTM

TL;DR: The authors used a match-LSTM to perform word-by-word matching of the hypothesis with the premise, which achieved an accuracy of 86.1% on the Stanford Natural Language Inference (SNLI) corpus.
Posted Content

Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning

TL;DR: Deep Voice 3 is presented, a fully-convolutional attention-based neural text-to-speech (TTS) system that matches state-of-the-art neural speech synthesis systems in naturalness while training ten times faster.
Posted Content

Massively Multilingual Neural Machine Translation

TL;DR: It is shown that massively multilingual many-to-many models are effective in low resource settings, outperforming the previous state-of-the-art while supporting up to 59 languages in 116 translation directions in a single model.
Proceedings Article

Control of memory, active perception, and action in minecraft

TL;DR: These tasks are designed to emphasize, in a controllable manner, issues that pose challenges for RL methods including partial observability, delayed rewards, high-dimensional visual observations, and the need to use active perception in a correct manner so as to perform well in the tasks.
References
More filters
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings ArticleDOI

Learning Phrase Representations using RNN Encoder--Decoder for Statistical Machine Translation

TL;DR: In this paper, the encoder and decoder of the RNN Encoder-Decoder model are jointly trained to maximize the conditional probability of a target sequence given a source sequence.
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Journal ArticleDOI

Bidirectional recurrent neural networks

TL;DR: It is shown how the proposed bidirectional structure can be easily modified to allow efficient estimation of the conditional posterior probability of complete symbol sequences without making any explicit assumption about the shape of the distribution.
Journal ArticleDOI

A neural probabilistic language model

TL;DR: The authors propose to learn a distributed representation for words which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences, which can be expressed in terms of these representations.