scispace - formally typeset
Journal ArticleDOI

New Trellis Code Design for Spatial Modulation

TLDR
It is shown via computer simulations and supported by a theoretical error performance analysis that the proposed SM-TC schemes achieve significantly better error performance than the classical space-time trellis codes and coded V-BLAST systems at the same spectral efficiency, yet with reduced decoding complexity.
Abstract
Spatial modulation (SM), in which multiple antennas are used to convey information besides the conventional M-ary signal constellations, is a new multiple-input multiple-output (MIMO) transmission technique, which has recently been proposed as an alternative to V-BLAST (vertical Bell Labs layered space-time). In this paper, a novel MIMO transmission scheme, called spatial modulation with trellis coding (SM-TC), is proposed. Similar to the conventional trellis coded modulation (TCM), in this scheme, a trellis encoder and an SM mapper are jointly designed to take advantage of the benefits of both. A soft decision Viterbi decoder, which is fed with the soft information supplied by the optimal SM decoder, is used at the receiver. A pairwise error probability (PEP) upper bound is derived for the SM-TC scheme in uncorrelated quasi-static Rayleigh fading channels. From the PEP upper bound, code design criteria are given and then used to obtain new 4-, 8- and 16-state SM-TC schemes using quadrature phase-shift keying (QPSK) and 8-ary phase-shift keying (8-PSK) modulations for 2,3 and 4 bits/s/Hz spectral efficiencies. It is shown via computer simulations and also supported by a theoretical error performance analysis that the proposed SM-TC schemes achieve significantly better error performance than the classical space-time trellis codes and coded V-BLAST systems at the same spectral efficiency, yet with reduced decoding complexity.

read more

Citations
More filters
Journal ArticleDOI

Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation

TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
Journal ArticleDOI

Orthogonal Frequency Division Multiplexing With Index Modulation

TL;DR: It is shown via computer simulations that the proposed OFDM with index modulation scheme achieves significantly better error performance than classical OFDM due to the information bits carried in the spatial domain by the indices of OFDM subcarriers.
Journal ArticleDOI

Index Modulation Techniques for Next-Generation Wireless Networks

TL;DR: Three forms of IM are investigated: spatial modulation, channel modulation and orthogonal frequency division multiplexing (OFDM) with IM, which consider the transmit antennas of a multiple-input multiple-output system, the radio frequency mirrors mounted at a transmit antenna and the subcarriers of an OFDM system for IM techniques, respectively.

Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation This tutorial paper offers a comprehensive overview of the state of the art in spatial modulation for generalized multiple-input-multiple-output (MIMO) technologies.

TL;DR: This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM- MIMO.
Proceedings ArticleDOI

Orthogonal frequency division multiplexing with index modulation

TL;DR: It is shown via computer simulations that the proposed OFDM with index modulation achieves significantly better error performance than classical OFDM due to the information bits carried by the indices of OFDM subcarriers under both ideal and realistic channel conditions.
References
More filters
Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Journal ArticleDOI

Channel coding with multilevel/phase signals

TL;DR: A coding technique is described which improves error performance of synchronous data links without sacrificing data rate or requiring more bandwidth by channel coding with expanded sets of multilevel/phase signals in a manner which increases free Euclidean distance.
Proceedings ArticleDOI

V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel

TL;DR: This paper describes a wireless communication architecture known as vertical BLAST (Bell Laboratories Layered Space-Time) or V-BLAST, which has been implemented in real-time in the laboratory and demonstrated spectral efficiencies of 20-40 bps/Hz in an indoor propagation environment at realistic SNRs and error rates.
Book

Error control coding : fundamentals and applications

TL;DR: This book explains coding for Reliable Digital Transmission and Storage using Trellis-Based Soft-Decision Decoding Algorithms for Linear Block Codes and Convolutional Codes, and some of the techniques used in this work.
Book

Introduction to Space-Time Wireless Communications

TL;DR: This book is an accessible introduction to every fundamental aspect of space-time wireless communications and a powerful tool for improving system performance that already features in the UMTS and CDMA2000 mobile standards.
Related Papers (5)