scispace - formally typeset
Journal ArticleDOI

On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses

Jörn Bonse, +2 more
- 23 Nov 2009 - 
- Vol. 106, Iss: 10, pp 104910
Reads0
Chats0
TLDR
In this paper, the formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSss) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130
Abstract
The formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSSs) on single-crystalline silicon upon irradiation with single or multiple femtosecond-laser pulses (pulse duration τ=130 fs and central wavelength λ=800 nm) in air is studied experimentally and theoretically. In our theoretical approach, we model the LIPSS formation by combining the generally accepted first-principles theory of Sipe and co-workers with a Drude model in order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma. Our results are capable to explain quantitatively the spatial periods of the LIPSSs being somewhat smaller than the laser wavelength, their orientation perpendicular to the laser beam polarization, and their characteristic fluence dependence. Moreover, evidence is presented that surface plasmon polaritons play a dominant role during the initial stage of near-wavelength-sized periodic surface structures in fem...

read more

Citations
More filters
Journal ArticleDOI

Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium

TL;DR: The HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation, and it was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different.
Journal ArticleDOI

Assessment of femtosecond laser induced periodic surface structures on polymer films.

TL;DR: Comparison of experimental and simulated GISAXS patterns suggests that LIPSS can be suitably described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice.
Journal ArticleDOI

Periodical structures induced by femtosecond laser on metals in air and liquid environments

TL;DR: In this paper, the laser-induced periodic surface structures (LIPSS) are obtained on metallic films (Cr, Ti, and W) by femtosecond laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths in air and liquid environments.
Journal ArticleDOI

Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

TL;DR: In this article, a model predicting the formation of laser-induced periodic surface structures (LIPSSss) is presented, where the rough surface is modified by "ablation after each laser pulse, according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms".
Journal ArticleDOI

Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation

TL;DR: In this paper, a refined model of the second harmonic generation ripples spacing theory was proposed, taking into account the modified femtosecond laser excited silicon refractive index n∗ related to the Drude model.
References
More filters
Book

Handbook of Optical Constants of Solids

TL;DR: In this paper, E.D. Palik and R.R. Potter, Basic Parameters for Measuring Optical Properties, and W.W.Hunter, Measurement of Optical Constants in the Vacuum Ultraviolet Spectral Region.
Journal ArticleDOI

Laser-induced periodic surface structure. I. Theory

TL;DR: In this paper, a theory for laser-induced periodic surface structure was developed by associating each Fourier component of induced structure with the corresponding Fourier components of inhomogeneous energy deposition just beneath the surface.
Journal ArticleDOI

Femtosecond laser ablation of silicon–modification thresholds and morphology

TL;DR: In this article, the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration was investigated, and the authors found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and Ablation to occur with increasing laser fluence down to the shortest pulse durations.
Journal ArticleDOI

Generation of dense electron-hole plasmas in silicon

TL;DR: In this paper, the authors studied the generation of dense electron-hole plasmas in silicon with intense 100-fs laser pulses by time-resolved measurements of the optical reflectivity at 625 nm.
Related Papers (5)