scispace - formally typeset
Journal ArticleDOI

Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser

Reads0
Chats0
TLDR
It is shown that short-pulse laser-induced classical ripples on dielectrics, semiconductors, and conductors exhibit a prominent "non-classical" characteristic-in normal incidence the periods are definitely smaller than laser wavelengths, which indicates that the simplified scattering model should be revised.
Abstract
We show that short-pulse laser-induced classical ripples on dielectrics, semiconductors, and conductors exhibit a prominent "non-classical" characteristic-in normal incidence the periods are definitely smaller than laser wavelengths, which indicates that the simplified scattering model should be revised. Taking into account the surface plasmons (SPs), we consider that the ripples result from the initial direct SP-laser interference and the subsequent grating-assisted SP-laser coupling. With the model, the period-decreasing phenomenon originates in the admixture of the field-distribution effect and the grating-coupling effect. Further, we propose an approach for obtaining the dielectric constant, electron density, and electron collision time of the high-excited surface. With the derived parameters, the numerical simulations are in good agreement with the experimental results. On the other hand, our results confirm that the surface irradiated by short-pulse laser with damage-threshold fluence should behave metallic, no matter for metal, semiconductor, or dielectric, and the short-pulse laser-induced subwavelength structures should be ascribed to a phenomenon of nano-optics.

read more

Citations
More filters
Journal ArticleDOI

Direct femtosecond laser surface nano/microstructuring and its applications

TL;DR: In this article, a new field of direct femtosecond laser surface nano/microstructuring and its applications is reviewed, where the authors present a review of the current state-of-the-art in this field.
Journal ArticleDOI

Femtosecond laser-induced periodic surface structures

TL;DR: In this paper, the formation of laser-induced periodic surface structures (LIPSS) in different materials (metals, semiconductors, and dielectrics) upon irradiation with linearly polarized fs-laser pulses (τ,∼ 30-150 fs, λ, ∼, ∼ 800 nm) in air environment is studied experimentally and theoretically.
Journal ArticleDOI

Laser-Induced Periodic Surface Structures— A Scientific Evergreen

TL;DR: In this article, the current state in the field of laser-induced periodic surface structures (LIPSS) is reviewed, and the formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments.
Journal ArticleDOI

Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon

TL;DR: In this paper, the formation of nearly wavelength-sized laser-induced periodic surface structures (LIPSS) on single-crystalline silicon upon irradiation with single (N=1) and multiple (N≤1000) linearly polarized femtosecond (fs) laser pulses (pulse duration τ=130 fs, central wavelength λ=800 nm) in air is studied experimentally.
Journal ArticleDOI

Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication

TL;DR: In this paper, the fundamental aspects of laser-gold nanoparticle (Au NP) interaction that leads to nanoscale energy deposition to the surroundings through light amplification and heat generation are described.
References
More filters
Journal ArticleDOI

Surface plasmon subwavelength optics

TL;DR: By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved.
Journal ArticleDOI

Extraordinary optical transmission through sub-wavelength hole arrays

TL;DR: In this article, the optical properties of submicrometre cylindrical cavities in metallic films were explored and it was shown that arrays of such holes display highly unusual zero-order transmission spectra at wavelengths larger than the array period, beyond which no diffraction occurs.
Book

Surface Plasmons on Smooth and Rough Surfaces and on Gratings

H. Raether
TL;DR: In this article, surface plasmons on smooth surfaces were used for light scattering at rough surfaces without an ATR device, and surface plasmon on gratings for enhanced roughness.
Journal ArticleDOI

Femtosecond laser micromachining in transparent materials

TL;DR: In this article, the physical mechanisms and the main experimental parameters involved in femtosecond laser micromachining of transparent materials, and important emerging applications of the technology are described.
Journal ArticleDOI

Femtosecond, picosecond and nanosecond laser ablation of solids

TL;DR: Theoretical models and qualitative explanations of experimental results are presented in this paper for femtosecond laser ablation of solid targets by 0.2-5000 ps Ti: Sapphire laser pulses.
Related Papers (5)