scispace - formally typeset
Open AccessJournal ArticleDOI

Organometallic Anticancer Compounds

Reads0
Chats0
TLDR
The quest for alternative drugs to the well-known cisplatin and its derivatives, which are still used in more than 50% of the treatment regimes for patients suffering from cancer, is highly needed, and organometallic compounds have recently been found to be promising anticancer drug candidates.
Abstract
The quest for alternative drugs to the well-known cisplatin and its derivatives, which are still used in more than 50% of the treatment regimes for patients suffering from cancer, is highly needed.1,2 Despite their tremendous success, these platinum compounds suffer from two main disadvantages: they are inefficient against platinum-resistant tumors, and they have severe side effects such as nephrotoxicity. The latter drawback is the consequence of the fact that the ultimate target of these drugs is ubiquitous: It is generally accepted that Pt anticancer drugs target DNA, which is present in all cells.3,4 Furthermore, as a consequence of its particular chemical structure, cisplatin in particular offers little possibility for rational improvements to increase its tumor specificity and thereby reduce undesired side effects. In this context, organometallic compounds, which are defined as metal complexes containing at least one direct, covalent metal−carbon bond, have recently been found to be promising anticancer drug candidates. Organometallics have a great structural variety (ranging from linear to octahedral and even beyond), have far more diverse stereochemistry than organic compounds (for an octahedral complex with six different ligands, 30 stereoisomers exist!), and by rational ligand design, provide control over key kinetic properties (such as hydrolysis rate of ligands). Furthermore, they are kinetically stable, usually uncharged, and relatively lipophilic and their metal atom is in a low oxidation state. Because of these fundamental differences compared to “classical coordination metal complexes”, organometallics offer ample opportunities in the design of novel classes of medicinal compounds, potentially with new metal-specific modes of action. Interestingly, all the typical classes of organometallics such as metallocenes, half-sandwich, carbene-, CO-, or π-ligands, which have been widely used for catalysis or biosensing purposes, have now also found application in medicinal chemistry (see Figure ​Figure11 for an overview of these typical classes of organometallics). Figure 1 Summary of the typical classes of organometallic compounds used in medicinal chemistry. In this Perspective, we report on the recent advances in the discovery of organometallics with proven antiproliferative activity. We are emphasizing those compounds where efforts have been made to identify their molecular target and mode of action by biochemical or cell biology studies. This Perspective covers more classes of compounds and in more detail than a recent tutorial review by Hartinger and Dyson.(5) Furthermore, whereas recent reviews and book contributions attest to the rapid development of bioorganometallic chemistry in general,6,7 this Perspective focuses on their potential application as anticancer chemotherapeutics. Another very recent review article categorizes inorganic anticancer drug candidates by their modes of action.(8) It should be mentioned that a full description of all currently investigated types of compounds is hardly possible anymore in a concise review. For example, a particularly promising class of organometallic anticancer compounds, namely, radiolabeled organometallics, has been omitted for space limitations. Recent developments of such compounds have been reviewed in detail by Alberto.(9)

read more

Citations
More filters

Antitumour metal compounds: more than theme and variations

TL;DR: The recent achievement of oxaliplatin for the treatment of colon cancer should not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs.
Journal ArticleDOI

Metal N-heterocyclic carbene complexes as potential antitumor metallodrugs

TL;DR: This review describes the advances that have been achieved in using transition metal complexes containing NHC ligands as antitumor agents and clearly demonstrate the great potential of metal-NHC complexes as antitUMor agents.
Journal ArticleDOI

Exploration of the medical periodic table: towards new targets

TL;DR: Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis, and examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.
Journal ArticleDOI

Noble metals in medicine: Latest advances

TL;DR: A detailed account of the latest results of metal-based drugs and their potential uses in the cure of severe diseases is provided and the number of published studies in this field is huge.
References
More filters
Journal ArticleDOI

Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment

TL;DR: Nanosystems, containing for the first time a high load of anticancer organometallic triphenylethylenes, are developed, compatible with an increased persistence in the blood and a promising antitumour activity.
Journal ArticleDOI

Bioorganometallic chemistry of molybdocene dichloride

TL;DR: In this article, the authors summarized key results reported in the last decade on the biological chemistry of molybdocene dichloride, including results from human clinical trials, and showed that Cp2MoCl2 is able to catalyse the hydrolysis of activated phosphate esters under physiological conditions.
Journal ArticleDOI

Synthesis and Biological Evaluation of Chromium Bioorganometallics Based on the Antibiotic Platensimycin Lead Structure

TL;DR: The synthesis, characterization and biological evaluation of the first organometallic antibiotic inspired by platensimycin is described, finding that compounds 2, 3, 5 and 4 show similar cytotoxicity against HeLa, HepG2 and HT‐29 mammalian cell lines.
Journal ArticleDOI

The first titanocenyl dichloride moiety vectorised by a selective estrogen receptor modulator (SERM). Synthesis and preliminary biochemical behaviour

TL;DR: A titanocene derivative of the anticancer drug tamoxifen reveals an unexpected proliferative effect on the hormone-dependent cell line MCF7 and is also observed with Cp 2 TiCl 2 alone.
Journal ArticleDOI

Studies on the anti-tumour activity of some iron sandwich compounds

TL;DR: In this article, four types of water-soluble iron sandwich compounds, ferrocenes bearing charged side chains (Ia), ferrocenium salts (Ib), (η-arene) 2 Fe 2+ salts (II) and ( η-cyclopentadienyl)Fe + salts (III), have been tested in in vitro against experimental tumours, L1210, Walkers and Chinese hamster lung (V.79).
Related Papers (5)