scispace - formally typeset
Journal ArticleDOI

Origin of the orbital architecture of the giant planets of the Solar System.

Reads0
Chats0
TLDR
This model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations, provided that Jupiter and Saturn crossed their 1:2 orbital resonance.
Abstract
A collection of three papers in this issue, tackling seemingly unrelated planetary phenomena, marks a notable unification of Solar System dynamics. The three problems covered are the hard-to-explain orbits of giant planets, the evolution of the orbits of Jupiter's Trojan asteroids, and the cause of the ‘Late Heavy Bombardment’ that peppered the Moon with meteors, comets and asteroids some 700 million years after the planets were formed. Key to all these events, on this new model, was a rapid migration of the giant planets (Saturn, Jupiter, Neptune and Uranus) after a long period of stability within the Solar System. Planetary formation theories1,2 suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of ∼2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets3,4,5 have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals6,7. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

read more

Citations
More filters
Journal ArticleDOI

Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets

TL;DR: This model not only naturally explains the Late Heavy Bombardment, but also reproduces the observational constraints of the outer Solar System.
Journal ArticleDOI

Evolution of Debris Disks

TL;DR: In this article, a review describes the theoretical framework within which debris disk evolution takes place and shows how that framework has been constrained by observations, including infrared photometry of large numbers of debris disks, providing snapshots of the dust present at different evolutionary phases.
Journal ArticleDOI

The PLATO 2.0 mission

Heike Rauer, +167 more
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.
Journal ArticleDOI

Chaotic capture of Jupiter's Trojan asteroids in the early Solar System.

TL;DR: It is shown that the Trojans could have formed in more distant regions and been subsequently captured into co-orbital motion with Jupiter during the time when the giant planets migrated by removing neighbouring planetesimals.
Journal ArticleDOI

The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage

TL;DR: A detailed survey of more than 100 comets has been carried out by as mentioned in this paper, which enabled taxonomic groupings based on free radical species and on crystallinity of rocky grains.
References
More filters
Journal ArticleDOI

Formation of the Giant Planets by Concurrent Accretion of Solids and Gas

TL;DR: In this article, the authors presented a self-consistent, interactive simulation of the formation of the giant planets, in which for the first time both the gas and planetesimal accretion rates were calculated in a selfconsistent and interactive fashion.
Book

Solar system dynamics

TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. And the disturbing function is extended to include the spin-orbit coupling and the resonance perturbations.

Solar system dynamics

TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. But the disturbing function is defined as a special case of the two body problem and is not considered in this paper.
Journal ArticleDOI

A hybrid symplectic integrator that permits close encounters between massive bodies

TL;DR: In this article, a mixed-variable symplectic integrator is proposed to solve the problem of the potential energy term for the pair undergoing the encounter becoming comparable to the terms representing the unperturbed motion in the Hamiltonian, which can be overcome using a hybrid method in which the close encounter term is integrated using a conventional integrator, whilst the remaining terms are solved symplectically.
Journal ArticleDOI

Disk Frequencies and Lifetimes in Young Clusters

TL;DR: In this paper, the authors report the results of the first sensitive L-band survey of the intermediate-age (2.5-30 Myr) clusters NGC 2264, NGC 2362, and NGC 1960.
Related Papers (5)