scispace - formally typeset
S

Saskia Hekker

Researcher at Max Planck Society

Publications -  305
Citations -  35556

Saskia Hekker is an academic researcher from Max Planck Society. The author has contributed to research in topics: Stars & Asteroseismology. The author has an hindex of 102, co-authored 299 publications receiving 32844 citations. Previous affiliations of Saskia Hekker include Katholieke Universiteit Leuven & Aarhus University.

Papers
More filters
Journal ArticleDOI

The eleventh and twelfth data releases of the Sloan Digital Sky Survey: final data from SDSS-III

Shadab Alam, +363 more
TL;DR: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrogram, and a novel optical interferometer.
Journal ArticleDOI

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Steven R. Majewski, +96 more
TL;DR: In this article, the Hungarian National Research, Development and Innovation Office (K-119517) and Hungarian National Science Foundation (KNFI) have proposed a method to detect the presence of asteroids in Earth's magnetic field.
Journal ArticleDOI

The PLATO 2.0 Mission

Heike Rauer, +160 more
TL;DR: The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 sec readout cadence and 2 with 2.5 sec candence) providing a wide field-of-view (2232 deg2) and a large photometric magnitude range (4-16 mag) as discussed by the authors.
Journal ArticleDOI

The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

TL;DR: The Apache Point Observatory Galactic Evolution Experiment (APOGEE) as discussed by the authors collected a half million high resolution (R~22,500), high S/N (>100), infrared (1.51-1.70 microns) spectra for 146,000 stars, with time series information via repeat visits to most of these stars.
Journal ArticleDOI

The PLATO 2.0 mission

Heike Rauer, +167 more
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.