scispace - formally typeset
Open AccessProceedings Article

Photonic crystals

Reads0
Chats0
TLDR
In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract
The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

read more

Citations
More filters
Journal ArticleDOI

Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene

TL;DR: In this article, the authors present measurements of transmission and reflection spectra of a microwave photonic crystal composed of 874 metallic cylinders arranged in a triangular lattice and show clear evidence of a Dirac point, a characteristic of a spectrum of relativistic massless fermions.

Fabrication of electromagnetic crystals with a complete diamond structure by stereography

S. Kirihara
TL;DR: In this article, a diamond lattice with a diamond structure was designed to reflect electromagnetic waves by forming an electromagnetic bandgap in the GHz range, and the location of the band gap agreed with the band calculation using the plane wave propagation method.
Journal ArticleDOI

Multi-Beam Interference Advances and Applications: Nano-Electronics, Photonic Crystals, Metamaterials, Subwavelength Structures, Optical Trapping, and Biomedical Structures

TL;DR: Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.
Journal ArticleDOI

Optical-gain enhancement in two-dimensional active photonic crystals

TL;DR: In this paper, the authors investigated the optical gain enhancement effect in two-dimensional photonic crystals with active (gain) lattice points and identified the leading factors that determine this enhancement on the basis of a number of numerically calculated data points.
References
More filters
Journal ArticleDOI

A revolution in optical manipulation

TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Journal ArticleDOI

Two-Dimensional Photonic Band-Gap Defect Mode Laser

TL;DR: A laser cavity formed from a single defect in a two-dimensional photonic crystal is demonstrated and pulsed lasing action has been observed at a wavelength of 1.5 micrometers from optically pumped devices with a substrate temperature of 143 kelvin.
Journal ArticleDOI

Nano-optics of surface plasmon polaritons

TL;DR: A surface plasmon polariton (SPP) is an electromagnetic excitation existing on the surface of a good metal, whose electromagnetic field decays exponentially with distance from the surface.
Journal ArticleDOI

Monodispersed Colloidal Spheres: Old Materials with New Applications

TL;DR: An overview of current research activities that center on monodispersed colloidal spheres whose diameter falls anywhere in the range of 10 nm to 1 μm can be found in this paper.
Journal Article

Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication

TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Related Papers (5)