scispace - formally typeset
Search or ask a question

Showing papers in "Micromachines in 2011"


Journal ArticleDOI
TL;DR: This review presents an extensive overview of a large number of microvalve and micropump designs with great variability in performance and operation and provides insight into their advantages and limitations for biomedical uses.
Abstract: This review presents an extensive overview of a large number of microvalve and micropump designs with great variability in performance and operation. The performance of a given design varies greatly depending on the particular assembly procedure and there is no standardized performance test against which all microvalves and micropumps can be compared. We present the designs with a historical perspective and provide insight into their advantages and limitations for biomedical uses.

290 citations


Journal ArticleDOI
TL;DR: This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling, with a special focus of their implementation in the case of low voltage output transducers.
Abstract: This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems) will be presented.

220 citations


Journal ArticleDOI
TL;DR: A review of microfluidic approaches realized to successfully fractionate one or more blood components is presented in this article, where techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed.
Abstract: Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity), purity (selectivity), and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC) devices and provide future perspectives.

163 citations


Journal ArticleDOI
TL;DR: Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.
Abstract: Research in recent years has greatly advanced the understanding and capabilities of multi-beam interference (MBI). With this technology it is now possible to generate a wide range of one-, two-, and three-dimensional periodic optical-intensity distributions at the micro- and nano-scale over a large length/area/volume. These patterns may be used directly or recorded in photo-sensitive materials using multi-beam interference lithography (MBIL) to accomplish subwavelength patterning. Advances in MBI and MBIL and a very wide range of applications areas including nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures are reviewed and put into a unified perspective.

96 citations


Journal ArticleDOI
TL;DR: This paper presents the fabrication process of a single-chamber planar valveless micropump driven by an external electromagnetic actuator, which allows for potential integration of the pump with other PDMS-based microfluidic systems for biomedical applications.
Abstract: This paper presents the fabrication process of a single-chamber planar valveless micropump driven by an external electromagnetic actuator. This micropump features a pair of micro diffuser and nozzle elements used to rectify the fluid flow, and an elastic magnetic membrane used to regulate the pressure in the enclosed fluid chamber. Polydimethylsiloxane (PDMS) is used as the main construction material of this proposed micropump, including the structural substrate and the planar actuation membrane embedded with a thin micro magnet. Both the Finite Element Method and experimental analysis are used to assess the PDMS-membrane actuation under the applied electromagnetic forces and characterize the pump performance at variable working conditions. The resonant frequency of this micropump is identified experimentally and de-ionized (DI) water is loaded to account for the coupling effects of the working fluid. The experimental data was used to demonstrate the reliability of flow rates and how it can be controlled by consistently adjusting the driving frequencies and currents. The proposed micropump is capable of delivering a maximum flow rate of 319.6 μL/min and a maximum hydrostatic backpressure of 950 Pa (9.5 cm H2O). The planar design feature of the pump allows for potential integration of the pump with other PDMS-based microfluidic systems for biomedical applications.

66 citations


Journal ArticleDOI
TL;DR: Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer that can be combined to three-dimensional systems by ultrasonic welding.
Abstract: Ultrasonic hot embossing is a new process for fast and low-cost production of micro systems from polymer. Investment costs are on the order of 20.000 € and cycle times are a few seconds. Microstructures are fabricated on polymer foils and can be combined to three-dimensional systems by ultrasonic welding.

40 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a simple micromechanics-based model to estimate the effective thermal conductivity of macroscopically isotropic materials of matrix-inclusion type.
Abstract: The purpose of this paper is to present a simple micromechanics-based model to estimate the effective thermal conductivity of macroscopically isotropic materials of matrix-inclusion type. The methodology is based on the well-established Mori-Tanaka method for composite media reinforced with ellipsoidal inclusions, extended to account for imperfect thermal contact at the matrix-inclusion interface, random orientation of particles and particle size distribution. Using simple ensemble averaging arguments, we show that the Mori-Tanaka relations are still applicable for these complex systems, provided that the inclusion conductivity is appropriately modified. Such conclusion is supported by the verification of the model against a detailed finite-element study as well as its validation against experimental data for a wide range of engineering material systems.

38 citations


Journal ArticleDOI
TL;DR: New surface mounting and packaging technologies, using self-assembly with chips having cavity structures, were investigated for three-dimensional (3D) and hetero integration of complementary metal-oxide semiconductors (CMOS) and microelectromechanical systems (MEMS).
Abstract: New surface mounting and packaging technologies, using self-assembly with chips having cavity structures, were investigated for three-dimensional (3D) and hetero integration of complementary metal-oxide semiconductors (CMOS) and microelectromechanical systems (MEMS). By the surface tension of small droplets of 0.5 wt% hydrogen fluoride (HF) aqueous solution, the cavity chips, with a side length of 3 mm, were precisely aligned to hydrophilic bonding regions on the surface of plateaus formed on Si substrates. The plateaus have micro-channels to readily evaporate and fully remove the liquid from the cavities. The average alignment accuracy of the chips with a 1 mm square cavity was found to be 0.4 mm. The alignment accuracy depends, not only on the area of the bonding regions on the substrates and the length of chip periphery without the widths of channels in the plateaus, but also the area wetted by the liquid on the bonding regions. The precisely aligned chips were then directly bonded to the substrates at room temperature without thermal compression, resulting in a high shear bonding strength of more than 10 MPa.

32 citations


Journal ArticleDOI
TL;DR: These platform designs for passive pumping of liquids offer great potential for increasing the number of sequential operations that can be performed on centrifugal microfluidic platforms, thereby reducing a fundamental limitation often associated with these platforms.
Abstract: We describe two novel centrifugal microfluidic platform designs that enable passive pumping of liquids radially inward while the platform is in motion. The first design uses an immiscible liquid to displace an aqueous solution back towards the center of the platform, while the second design uses an arbitrary pumping liquid with a volume of air between it and the solution being pumped. Both designs demonstrated the ability to effectively pump 55% to 60% of the solution radially inward at rotational frequencies as low as 400 rpm (6.7 Hz) to 700 rpm (11.7 Hz). The pumping operations reached completion within 120 s and 400 s respectively. These platform designs for passive pumping of liquids do not require moving parts or complex fabrication techniques. They offer great potential for increasing the number of sequential operations that can be performed on centrifugal microfluidic platforms, thereby reducing a fundamental limitation often associated with these platforms.

29 citations


Journal ArticleDOI
TL;DR: Emphasis is placed on the salient aspects of this technology in terms of the types of micro- and nanomaterials being assembled, the principles and methodologies, as well as their novel applications.
Abstract: Self-assembly in micro- and nanofluidic devices has been the focus of much attention in recent years. This is not only due to their advantages of self-assembling with fine temporal and spatial control in addition to continuous processing that is not easily accessible in conventional batch procedures, but they have evolved to become indispensable tools to localize and assimilate micro- and nanocomponents into numerous applications, such as bioelectronics, drug delivery, photonics, novel microelectronic architectures, building blocks for tissue engineering and metamaterials, and nanomedicine. This review aims to focus on the most recent advancements and characteristic investigations on the self-assembly of micro- and nanoscopic objects in micro- and nanofluidic devices. Emphasis is placed on the salient aspects of this technology in terms of the types of micro- and nanomaterials being assembled, the principles and methodologies, as well as their novel applications.

29 citations


Journal ArticleDOI
TL;DR: This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes.
Abstract: Digital microfluidic has recently been under intensive study, as an effective method to carry out liquid manipulation in Lab-On-a-Chip (LOC) systems. Among droplet actuation forces, ElectroWetting on Dielectric (EWOD) and Liquid DiElectroPhoresis (LDEP) are powerful tools, used in many LOC platforms. Such digital microfluidic transductions do not require integration of complex mechanical components such as pumps and valves to perform the fluidic operations. However, although LDEP has been proved to be efficient to carry and manipulate biological components in insulating liquids, this microfluidic transduction requires several hundreds of volts at relatively high frequencies (kHz to MHz). With the purpose to develop integrated microsystems µ-TAS (Micro Total Analysis System) or Point of Care systems, the goal here is to reduce such high actuation voltage, the power consumption, though using standard dielectric materials. This paper gives key rules to determine the best tradeoff between liquid manipulation efficiency, low-power consumption and robustness of microsystems using LDEP actuation. This study leans on an electromechanical model to describe liquid manipulation that is applied to an experimental setup, and provides precise quantification of both actuation voltage Vth and frequency fc thresholds between EWOD and LDEP regimes. In particular, several parameters will be investigated to quantify Vth and fc, such as the influence of the chip materials, the electrodes size and the device configurations. Compared to current studies in the field, significant reduction of both Vth and fc is achieved by optimization of the aforementioned parameters.

Journal ArticleDOI
TL;DR: The demonstrated dual-phase activation and nonlinear threshold-based motion overcomes the previously-reported microdrop interference effect, as it successfully actuates individual microdrops in systems with multiple neighbouring microdrops.
Abstract: A 16 × 16 digital microfluidic multiplexer is demonstrated The device makes use of dual-phase AC activation in a bi-layered electrode structure for actuating microdrops independently A switching arrangement is employed to localize two out-of-phase AC waveforms in one overlapped region of the two-dimensional multiplexer grid The superimposed AC waveforms overcome the threshold voltage for motion of a local microdrop The demonstrated dual-phase activation and nonlinear threshold-based motion overcomes the previously-reported microdrop interference effect, as it successfully actuates individual microdrops in systems with multiple neighbouring microdrops The device is demonstrated with an integrated centre-tap transformer using a 100 Vrms input voltage and minimal power consumption

Journal ArticleDOI
TL;DR: A novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale three-dimensional polymer structures using visible light sources instead of ultra-violet (UV) light sources or lasers is reported.
Abstract: We report in this paper a novel, inexpensive and flexible method for fabricating micrometer- and nanometer-scale threedimensional (3D) polymer structures using visible -light sources instead of ultraviolet (UV) light sources or lasers.- This method also does not require the conventional micro-photolithographic technique ( i.e. , photolithographic masks) for patterning and fabricating polymer structures such as hydrogels. The major materials and methods required for this novel fabrication technology are: 1) any cross-linked (network of photoactive polymers (examples of fabricated poly(ethylene glycol) (PEG)-diacrylate hydrogel structures are shown in this paper); 2) an Optically-induced Dielectrophoresis ((ODEP) System which includes an “ODEP chip” ( i.e. , any chip that changes its surface conductivity when exposed to visible light), an optical microscope, a projector, and a computer; and 3) an animator software hosted on a computer that can generate virtual or (dynamic patterns which can be projected onto the “ODEP chip” through the use of a projector and a condenser lens. Essentially, by placing a photosensitive polymer solution

Journal ArticleDOI
TL;DR: This paper outlines the microfabrication and characterization results of a multifunctional multisensor unit that enables accurate readings and cross-sensitivity compensation thanks to a combination of simultaneous readings from multiple sensors.
Abstract: Recent progress in data processing, communications and electronics miniaturization is now enabling the development of low-cost wireless sensor networks (WSN), which consist of spatially distributed autonomous sensor modules that collaborate to monitor real-time environmental conditions unobtrusively and with appropriate levels of spatial and temporal granularity. Recent and future applications of this technology range from preventative maintenance and quality control to environmental modelling and failure analysis. In order to fabricate these low-cost, low-power reliable monitoring platforms, it is necessary to improve the level of sensor integration available today. This paper outlines the microfabrication and characterization results of a multifunctional multisensor unit. An existing fabrication process for Complementary Metal Oxide Semiconductor CMOS-compatible microelectromechanical systems (MEMS) structures has been modified and extended to manufacture temperature, relative humidity, corrosion, gas thermal conductivity, and gas flow velocity sensors on a single silicon substrate. A dedicated signal conditioning circuit layer has been built around this MEMS multisensor die for integration on an existing low-power WSN module. The final unit enables accurate readings and cross-sensitivity compensation thanks to a combination of simultaneous readings from multiple sensors. Real-time communication to the outside world is ensured via

Journal ArticleDOI
TL;DR: A novel device with an integrated expansion chamber to culture, arrest and fix metaphase cells followed by a subsequent splashing protocol leading to ample metaphase chromosome spreads on a glass slide for metaphase FISH analysis.
Abstract: We present a novel integrated device for preparing metaphase chromosomes spread slides (FISHprep). The quality of cytogenetic analysis from patient samples greatly relies on the efficiency of sample pre-treatment and/or slide preparation. In cytogenetic slide preparation, cell cultures are routinely used to process samples (for culture, arrest and fixation of cells) and/or to expand limited amount of samples (in case of prenatal diagnostics). Arguably, this expansion and other sample pretreatments form the longest part of the entire diagnostic protocols spanning over 3-4 days. We present here a novel device with an integrated expansion chamber to culture, arrest and fix metaphase cells followed by a subsequent splashing protocol leading to ample metaphase chromosome spreads on a glass slide for metaphase FISH analysis. The device provides an easy, disposable, low cost, integrated solution with minimal handling for metaphase FISH slide preparation.

Journal ArticleDOI
TL;DR: A simple theoretical model is introduced for the response time of thermal flow sensors, using the finite-difference method to solve the heat transfer equations, taking into consideration the transient conduction and convection between the sensor membrane and the surrounding fluid.
Abstract: This paper introduces a simple theoretical model for the response time of thermal flow sensors Response time is defined here as the time needed by the sensor output signal to reach 632% of amplitude due to a change of fluid flow This model uses the finite-difference method to solve the heat transfer equations, taking into consideration the transient conduction and convection between the sensor membrane and the surrounding fluid Program results agree with experimental measurements and explain the response time dependence on the velocity and the sensor geometry Values of the response time vary from about 5 ms in the case of stagnant flow to 15 ms for a flow velocity of 44 m/s

Journal ArticleDOI
TL;DR: The design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications are reported, achieving automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures.
Abstract: We report the design, fabrication and characterization of micromachined Parylene structures for self-sealing liquid encapsulation applications. Automatic sealing is enabled through the use of an integrated annular-plate stiction valve which greatly reduces device footprint over in-plane configurations. We achieve automatic wafer-level liquid entrapment without using adhesives or processing at elevated pressures or temperatures. The ability to track changes to the internal liquid volume through the use of electrochemical impedance measurements is also presented.

Journal ArticleDOI
TL;DR: It is claimed that the SMPs can be used to develop a unifying technological and methodological framework that bridges the gap between passive M/NEMS and active, centimeter-sized robots, and hypothesize a continuum in both complexity and length scale between these two extremes.
Abstract: A wealth of current research in microengineering aims at fabricating devices of increasing complexity, notably by (self-)assembling elementary components into heterogeneous functional systems. At the same time, a large body of robotic research called swarm robotics is concerned with the design and the control of large ensembles of robots of decreasing size and complexity. This paper describes the asymptotic convergence of micro/nano electromechanical systems (M/NEMS) on one side, and swarm robotic systems on the other, toward a unifying class of systems, which we denote Smart Minimal Particles (SMPs). We define SMPs as mobile, purely reactive and physically embodied agents that compensate for their limited on-board capabilities using specifically engineered reactivity to external physical stimuli, including local energy and information scavenging. In trading off internal resources for simplicity and robustness, SMPs are still able to collectively perform non-trivial, spatio-temporally coordinated and highly scalable operations such as aggregation and self-assembly (SA). We outline the opposite converging tendencies, namely M/NEMS smarting and robotic minimalism, by reviewing each field’s literature with specific focus on self-assembling systems. Our main claim is that the SMPs can be used to develop a unifying technological and methodological framework that bridges the gap between passive M/NEMS and active, centimeter-sized robots. By proposing this unifying perspective, we hypothesize a continuum in both complexity and length scale between these two extremes. We illustrate the benefits of possible cross-fertilizations among these originally separate domains, with specific emphasis on the modeling of collective dynamics. Particularly, we argue that while most of the theoretical studies on M/NEMS SA dynamics belong so far to one of only two main frameworks—based on analytical master equations and on numerical agent-based simulations, respectively—alternative models developed in swarm robotics could be amenable to the task, and thereby provide important novel insights.

Journal ArticleDOI
TL;DR: The use of magnetic and capillary forces are used to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration.
Abstract: Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

Journal ArticleDOI
TL;DR: The design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor.
Abstract: In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

Journal ArticleDOI
TL;DR: Finite element modeling confirms that the mechanism for motion is a rocking mode that is influenced by two arms that are suspended mass springs tuned to different frequencies that lays the groundwork for further miniaturization.
Abstract: Microrobotics is a rapidly growing field with promising applications in microsurgery and microassembly. A challenge in these systems is providing power and control signals to the robot. This project explores crawling robots that are powered and controlled through a global mechanical vibration field. Structures within the robot will cause it to respond to particular frequencies with different motion modalities. A prototype, dubbed the ―jitterbot‖, was cut out of a 0.75 mm sheet of steel using electric discharge machining (EDM), and has a total footprint of approximately 30 mm × 20 mm in the xy-plane. The ―robot‖ has a tripod body (8 mm × 16 mm) with three small legs, and two suspended masses that are designed for specific resonance frequencies. The robot was tested on a plate that was vibrated vertically at frequencies ranging from 20 to 2,000 Hz. For particular resonant frequencies, the robot moves forward and turns in either a clockwise or counterclockwise direction. Finite element modeling confirms that the mechanism for motion is a rocking mode that is influenced by two arms that are suspended mass springs tuned to different frequencies. This lays the groundwork for further miniaturization.

Journal ArticleDOI
TL;DR: It is shown that uncoated titanium microelectrodes are fully applicable to measuring field potentials (FPs) from neurons and cardiomyocytes and tMEAs offer a cost effective platform to develop custom designed electrode configurations and more complex monitoring environments.
Abstract: In this paper, we describe our all-titanium microelectrode array (tMEA) fabrication process and show that uncoated titanium microelectrodes are fully applicable to measuring field potentials (FPs) from neurons and cardiomyocytes. Many novel research questions require custom designed microelectrode configurations different from the few commercially available ones. As several different configurations may be needed especially in a prototyping phase, considerable time and cost savings in MEA fabrication can be achieved by omitting the additional low impedance microelectrode coating, usually made of titanium nitride (TiN) or platinum black, and have a simplified and easily processable MEA structure instead. Noise, impedance, and atomic force microscopy (AFM) characterization were performed to our uncoated titanium microelectrodes and commercial TiN coated microelectrodes and were supplemented by FP measurements from neurons and cardiomyocytes on both platforms. Despite the increased noise levels compared to commercial MEAs our tMEAs produced good FP measurements from neurons and cardiomyocytes. Thus, tMEAs offer a cost effective platform to develop custom designed electrode configurations and more complex monitoring environments.

Journal ArticleDOI
TL;DR: This work treats GMR reflectors with a parabolic shape and shows that they are capable of focusing light effectively across wavelength bands that extend several hundred nanometers, indicating potential applicability of wideband-focusing devices in electromagnetics and photonics using compact resonance elements.
Abstract: Employing numerical simulations, we investigate the possibility of using curved guided-mode resonance (GMR) elements to focus light in reflection. We treat GMR reflectors with a parabolic shape and show that they are capable of focusing light effectively across wavelength bands that extend several hundred nanometers. The spatially infinite reflector model is simulated with a finite-element method, whereas the spatially finite reflector is treated with a finite-difference-time-domain method. The numerical results demonstrate that light intensity at the focal point is 8.6 dB stronger than the incident intensity when the GMR reflector’s size is on the order of 10 wavelengths. The results indicate potential applicability of wideband-focusing devices in electromagnetics and photonics using compact resonance elements.

Journal ArticleDOI
TL;DR: It is concluded that the H6-(YEHK)x21-H6 and C6-H 6 polypeptide fibrils are covalently attached to, respectively, Ni and Au substrates, which has important implications for the use of these materials for NEMS fabrication.
Abstract: The relative adhesion of two genetically engineered polypeptides termed as H6-(YEHK)x21-H6 and C6-(YEHK)X21-H6 has been investigated following growth and self-assembly on highly oriented pyrolytic graphite (HOPG), SiO2, Ni, and Au substrates to study covalent surface attachment via histidine (H) and cysteine (C) groups incorporated in the polypeptides. Both polypeptides formed predominantly bilayer fibrils upon deposition, in agreement with previous studies. The relative adhesion of polypeptide fibrils to the substrate, as well as intra-fibril cohesion, was examined via a forced-scanning method employing contact mode atomic force microscopy (AFM). H6-(YEHK)x21-H6 polypeptide fibrils were observed to detach from Ni, Au, SiO2, and HOPG substrates at normal tip forces of 106 ± 10 nN, 21 ± 3 nN, 22 ± 3 nN, and 3 ± 1 nN, respectively. C6-(YEHK)x21-H6 polypeptide fibrils were seen to detach from Au substrates at a normal spring force of 90 ± 10 nN. It is concluded that the H6-(YEHK)x21-H6 and C6-(YEHK)x21-H6 polypeptide fibrils are covalently attached to, respectively, Ni and Au substrates, which has important implications for the use of these materials for NEMS fabrication. The structural stability of deposited polypeptide fibrils was also evaluated by using normal tip forces less than those required for fibril detachment. H6-(YEHK)x21-H6 polypeptide fibrils on Ni substrates were the most structurally stable compared to C6-(YEHK)x21-H6 polypeptide fibrils on Au substrates. Controlled delayering of bilayer fibrils was also detected for sub-detachment normal forces.

Journal ArticleDOI
TL;DR: A mistake was discovered in the original derivation related to the definition of the apparent conductivity due to orientation averaging, which led to the incorrect conclusion that the conductivity of the liquid chromatography system is mainly determined by the orientation averaging process.
Abstract: We have discovered a mistake in our original derivation related to the definition of the apparent conductivity due to orientation averaging. [...]

Journal ArticleDOI
TL;DR: Self assembled monolayers formed by these molecules are studied by ellipsometry and revealed that the SAMs reside in a crystalline-like environment as the long methylene chains predominantly exist in all-trans conformation.
Abstract: A set of newly synthesized aryl-substituted amides of 16-mercaptohexadecanoic acid (R = 4-OH; 3,5-di-OH) are self-assembled on Au(111) substrate. Self assembled monolayers (SAMs) formed by these molecules are studied by ellipsometry from infrared to visible spectral range. Best fit calculations based on the three-phase optical model are employed in order to determine the average tilt angle of the hydrocarbon chains. The data revealed that the SAMs reside in a crystalline-like environment as the long methylene chains predominantly exist in all-trans conformation. The calculated tilt angle of the hydrocarbon chain is decreased by approximately 12° in comparison with the one for the correspondent long-chain n-alkyl thiols. Strong hydrogen bonded networks were detected between the amide proton and the carbonyl oxygen as well as between hydroxyl groups in the end aryl substituents. The transition dipole moments of the C=O, N-H and O-H modes are oriented almost parallel to the gold surface.