scispace - formally typeset
Open AccessJournal ArticleDOI

Photonic topological insulators

TLDR
It is shown that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those identified for condensed-matter topological insulators.
Abstract
Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

read more

Citations
More filters
Journal ArticleDOI

Weyl and Dirac semimetals in three-dimensional solids

TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Journal ArticleDOI

Topological Photonics

TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Journal ArticleDOI

Photonic Floquet topological insulators

TL;DR: This work proposes and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport—a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges.
Journal ArticleDOI

Non-Hermitian physics and PT symmetry

TL;DR: In this paper, the interplay between parity-time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics has been explored both theoretically and experimentally.
Journal ArticleDOI

Quantum fluids of light

TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
References
More filters
Journal ArticleDOI

Analogs of quantum-Hall-effect edge states in photonic crystals

TL;DR: In this article, it was shown that photonic crystals built with time-reversal-symmetry-breaking Faraday-effect media can exhibit chiral edge modes that propagate unidirectionally along boundaries across which the Faraday axis reverses.
Journal ArticleDOI

Role of bianisotropy in negative permeability and left-handed metamaterials

TL;DR: In this article, the existence of bianisotropic effects in those materials is investigated, making use of an approximate model, and some unexplained properties of the electromagnetic-wave propagation through these media, revealed by closer inspection of previous numerical simulations and experimental work, are highlighted.
Journal ArticleDOI

Hall effect of light.

TL;DR: The semiclassical equation of motion for the wave packet of light is derived taking into account the Berry curvature in momentum-space, which leads to the shift of wave-packet motion perpendicular to the gradient of the dielectric constant, i.e., the polarization-dependent Hall effect of light.
Journal Article

Robust optical delay lines via topological protection

TL;DR: The robustness of edge states against external influence is a phenomenon that has been successfully applied to electron transport as mentioned in this paper, and it is predicted that the same concept can also lead to improved optical devices.
Journal Article

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

TL;DR: It is shown that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercuryTelluride–cadmium telluride semiconductor quantum wells.
Related Papers (5)