scispace - formally typeset
Open AccessJournal ArticleDOI

Photonic topological insulators

TLDR
It is shown that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those identified for condensed-matter topological insulators.
Abstract
Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.

read more

Citations
More filters
Journal ArticleDOI

Topological Phases of Non-Hermitian Systems

TL;DR: In this paper, a coherent framework of topological phases of non-Hermitian Hamiltonians was developed, and the K-theory was applied to systematically classify all the topology phases in the Altland-Zirnbauer classes in all dimensions.
Journal ArticleDOI

Geometric phase and band inversion in periodic acoustic systems

TL;DR: The behavior of sound waves in phononic crystals is similar to that of electrons in solids as mentioned in this paper, and phononic band inversion and Zak phases have been measured for a 1D phononic system.
Journal ArticleDOI

Robust reconfigurable electromagnetic pathways within a photonic topological insulator

TL;DR: Robust propagation along reconfigurable pathways defined by synthetic gauge fields within a topological photonic metacrystal domains is demonstrated and provides a framework for freely steering electromagnetic radiation within photonic structures.
Journal ArticleDOI

All-Si valley-hall photonic topological insulator

TL;DR: In this paper, an all-Si photonic topological insulator (PTI) was proposed that emulates the quantum-valley-Hall (QVH) effect with backscattering-free edge states.
Journal ArticleDOI

Observation of topological edge states in parity-time-symmetric quantum walks

TL;DR: In this article, spontaneous parity and topological edge states are observed in a photonic non-Hermitian system with a quantum walk interferometer, where topological parity is achieved by time symmetry breaking.
References
More filters
Journal ArticleDOI

Colloquium: Topological insulators

TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Negative Refraction Makes a Perfect Lens

TL;DR: The authors' simulations show that a version of the lens operating at the frequency of visible light can be realized in the form of a thin slab of silver, which resolves objects only a few nanometers across.
Journal ArticleDOI

Experimental Verification of a Negative Index of Refraction

TL;DR: These experiments directly confirm the predictions of Maxwell's equations that n is given by the negative square root ofɛ·μ for the frequencies where both the permittivity and the permeability are negative.
Related Papers (5)