scispace - formally typeset
Journal ArticleDOI

Photoprotection and Other Responses of Plants to High Light Stress

Barbara Demmig-Adams, +1 more
- Vol. 43, Iss: 1, pp 599-626
Reads0
Chats0
TLDR
The Xanthophyll cycle and thermal energy dissipation were investigated in this paper. But the results of these experiments were limited to the case of light-capturing systems, where active oxygen was not formed in the Photochemical Apparatus.
Abstract
PHOTO PROTECTION 604 Prevention oj Excessive Light Absorption... 604 Removal of Excess Excitation Energy Directly within the Light-Capturing System ......... ...... . . ..... ..... . .... . ..... ...... .... . .. . .. . . ..... . . . ... ... . 604 Removal oj Active Oxygen Formed in the Photochemical Apparatus ........ . . .. . . . . . . 605 INACTIV A TIONiTURNOVER OF PS II 606 THE XANTHOPHYLL CYCLE AND THERMAL ENERGY DISSIPATION: A PHOTOPROTECTIVE RESPONSE 608 Characteristics oj the Xanthophyll Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 608 Association Among the De-epoxidized State oj the Xanthophyll Cycle, Thermal Energy Dissipation. and Photoprotection .. .. . . . .. . . ...... .. .. ... ... 609 Operation of the Xanthophyll Cycle in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .... . . . .. . . . . 611 CONCLUSIONS 618

read more

Citations
More filters
Journal Article

Stress tolerance in intertidal seaweeds

TL;DR: In this article, the authors consider the current understanding of stress tolerance in intertidal seaweeds and discuss ways in which future research could increase our understanding of the role of environmental factors in the ecology and physiology of these algae.
Journal ArticleDOI

Melatonin promotes water‐stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)

TL;DR: The results suggest that the adverse effects of water stress can be minimized by the application of melatonin, and specifically on strengthening cucumber roots.
Book

Photoinhibition of photosynthesis

TL;DR: In this paper, the authors defined photoinhibition as the light-induced decrease in CO2 assimilation, which would include the effects of photo-oxidative radical damage to many components of the photosynthetic apparatus that can occur in environmentally stressed organisms at high irradiances.
Journal ArticleDOI

In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply

TL;DR: Combined measurements of gas exchange and chlorophyll a fluorescence under low O2 concentrations allowed the demonstration of a linear relationship between the photochemical efficiency of PSII (fluorescence measurements) and the apparent quantum yield of gross photosynthesis (gas exchange).
Book ChapterDOI

Photoinhibition of Photosystem II

TL;DR: In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data.
References
More filters
Journal ArticleDOI

The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence

TL;DR: In this article, the quantum yield of non-cyclic electron transport was found to be directly proportional to the product of the photochemical fluorescence quenching (qQ) and the efficiency of excitation capture by open Photosystem II (PS II) reaction centres (Fv/Fm).
Journal ArticleDOI

Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.

TL;DR: Determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively.
Journal ArticleDOI

Plant Responses to Multiple Environmental FactorsPhysiological ecology provides tools for studying how interacting environmental resources control plant growth

TL;DR: Plant growth in diverse environments requires a similar balance of resources-energy, water, and mineral nutrients-to maintain optimal growth, but these resources differ by at least two orders of magnitude in the availability.
Journal ArticleDOI

Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants.

TL;DR: It is proposed that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves, one results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation in the pigment bed.

Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. [Populus balsamifera; Hedera; helix; Monstrosa deliciosa]

TL;DR: Comparative studies of chlorophyll a fluorescence and of the pigment composition of leaves suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light.
Related Papers (5)