scispace - formally typeset
Journal ArticleDOI

Photoprotection and Other Responses of Plants to High Light Stress

Barbara Demmig-Adams, +1 more
- Vol. 43, Iss: 1, pp 599-626
Reads0
Chats0
TLDR
The Xanthophyll cycle and thermal energy dissipation were investigated in this paper. But the results of these experiments were limited to the case of light-capturing systems, where active oxygen was not formed in the Photochemical Apparatus.
Abstract
PHOTO PROTECTION 604 Prevention oj Excessive Light Absorption... 604 Removal of Excess Excitation Energy Directly within the Light-Capturing System ......... ...... . . ..... ..... . .... . ..... ...... .... . .. . .. . . ..... . . . ... ... . 604 Removal oj Active Oxygen Formed in the Photochemical Apparatus ........ . . .. . . . . . . 605 INACTIV A TIONiTURNOVER OF PS II 606 THE XANTHOPHYLL CYCLE AND THERMAL ENERGY DISSIPATION: A PHOTOPROTECTIVE RESPONSE 608 Characteristics oj the Xanthophyll Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 608 Association Among the De-epoxidized State oj the Xanthophyll Cycle, Thermal Energy Dissipation. and Photoprotection .. .. . . . .. . . ...... .. .. ... ... 609 Operation of the Xanthophyll Cycle in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .... . . . .. . . . . 611 CONCLUSIONS 618

read more

Citations
More filters
Journal ArticleDOI

The Xanthophyll Cycle, Protein Turnover, and the High Light Tolerance of Sun-Acclimated Leaves.

TL;DR: It is suggested that in the presence of DTT (and in the absence of xanthophyll cycle-associated energy dissipation), protein turnover may be involved in the recovery process and the reversible depression of photochemical efficiency in CAP-treated sun leaves reflects xanthophical cycle- associated energy Dissipation.
Journal ArticleDOI

Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight

TL;DR: Differences in oxygen production rates and other biochemical parameters between cultures exposed to PAR-only or PAR + UV treatments were not directly attributable to UV, indicating that G. breve possesses an inherent UV resistance and a robust photosynthetic capability.
Journal ArticleDOI

Lateral diffusion of CO2 from shaded to illuminated leaf parts affects photosynthesis inside homobaric leaves

TL;DR: The results suggest that plants with homobaric leaves can benefit from lateral CO2 flux, in particular when stomata are closed (e.g. under drought stress), which may enhance photosynthetic processes near LSBs in such leaves and reduce the photoinhibitory effects of excess light.
Journal ArticleDOI

Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus

TL;DR: It seemed that xanthophyll formation was more strongly affected by photosynthetic photon flux density (PPFD) than by solar UV-B radiation, and the contents of chlorophyll and soluble protein did vary dramatically between treatments in all the species examined.
References
More filters
Journal ArticleDOI

The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence

TL;DR: In this article, the quantum yield of non-cyclic electron transport was found to be directly proportional to the product of the photochemical fluorescence quenching (qQ) and the efficiency of excitation capture by open Photosystem II (PS II) reaction centres (Fv/Fm).
Journal ArticleDOI

Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.

TL;DR: Determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively.
Journal ArticleDOI

Plant Responses to Multiple Environmental FactorsPhysiological ecology provides tools for studying how interacting environmental resources control plant growth

TL;DR: Plant growth in diverse environments requires a similar balance of resources-energy, water, and mineral nutrients-to maintain optimal growth, but these resources differ by at least two orders of magnitude in the availability.
Journal ArticleDOI

Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants.

TL;DR: It is proposed that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves, one results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation in the pigment bed.

Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. [Populus balsamifera; Hedera; helix; Monstrosa deliciosa]

TL;DR: Comparative studies of chlorophyll a fluorescence and of the pigment composition of leaves suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light.
Related Papers (5)