scispace - formally typeset
Open AccessProceedings Article

Prioritized Experience Replay

TLDR
Prioritized experience replay as mentioned in this paper is a framework for prioritizing experience, so as to replay important transitions more frequently, and therefore learn more efficiently, achieving human-level performance across many Atari games.
Abstract
Experience replay lets online reinforcement learning agents remember and reuse experiences from the past. In prior work, experience transitions were uniformly sampled from a replay memory. However, this approach simply replays transitions at the same frequency that they were originally experienced, regardless of their significance. In this paper we develop a framework for prioritizing experience, so as to replay important transitions more frequently, and therefore learn more efficiently. We use prioritized experience replay in Deep Q-Networks (DQN), a reinforcement learning algorithm that achieved human-level performance across many Atari games. DQN with prioritized experience replay achieves a new state-of-the-art, outperforming DQN with uniform replay on 41 out of 49 games.

read more

Citations
More filters
Posted Content

PBCS : Efficient Exploration and Exploitation Using a Synergy between Reinforcement Learning and Motion Planning

TL;DR: This paper proposes a new algorithm that combines motion planning and reinforcement learning to solve hard exploration environments, and shows that this method outperforms state-of-the-art RL algorithms in 2D maze environments of various sizes, and is able to improve on the trajectory obtained by the motion planning phase.
Proceedings ArticleDOI

Experience Selection in Multi-agent Deep Reinforcement Learning

TL;DR: A prioritized experience replay is used to alleviate the problem that the experience sample in the replay buffer is not compatible with the current policy, and the experimental results on the covert communication problem confirm the effectiveness of the proposed method.
Posted Content

Natural Gradient Deep Q-learning.

Ethan Knight, +1 more
- 20 Mar 2018 - 
TL;DR: It is found that NGDQN performs favorably relative to DQN, converging to significantly better policies faster and more frequently, indicating that natural gradient could be used for value function optimization in reinforcement learning to accelerate and stabilize training.
Journal ArticleDOI

Contrastive Hebbian Feedforward Learning for Neural Networks

TL;DR: CHL is a general learning algorithm that can be used to steer feedforward networks toward desirable outcomes, and steer them away from undesirable outcomes without any need for the specialized feedback circuit of BP or the symmetric connections used by the Boltzmann machines.
Posted Content

Investigating Simple Object Representations in Model-Free Deep Reinforcement Learning

Guy Davidson, +1 more
- 16 Feb 2020 - 
TL;DR: It is discovered that providing the Rainbow model (Hessel et al.,2018) with simple, feature-engineered object representations substantially boosts its performance on the Frostbite game from Atari 2600.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Posted Content

Playing Atari with Deep Reinforcement Learning

TL;DR: This work presents the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning, which outperforms all previous approaches on six of the games and surpasses a human expert on three of them.
Proceedings ArticleDOI

A discriminatively trained, multiscale, deformable part model

TL;DR: A discriminatively trained, multiscale, deformable part model for object detection, which achieves a two-fold improvement in average precision over the best performance in the 2006 PASCAL person detection challenge and outperforms the best results in the 2007 challenge in ten out of twenty categories.
Related Papers (5)