scispace - formally typeset
Journal ArticleDOI

Quantum thermodynamic cycles and quantum heat engines.

Reads0
Chats0
TLDR
The role of Maxwell's demon is discussed and it is found that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.
Abstract
In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between these two quantum heat engines are also investigated by considering their respective quantum thermodynamic processes. In addition, we discuss the role of Maxwell's demon in quantum thermodynamic cycles. We find that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.

read more

Citations
More filters
Journal ArticleDOI

Quantum Simulation

TL;DR: The main theoretical and experimental aspects of quantum simulation have been discussed in this article, and some of the challenges and promises of this fast-growing field have also been highlighted in this review.
Journal ArticleDOI

Quantum Thermodynamics: A Dynamical Viewpoint

TL;DR: The emergence of the 0-law, I- law, II-law and III-law of thermodynamics from quantum considerations is presented and it is claimed that inconsistency is the result of faulty analysis, pointing to flaws in approximations.
Journal ArticleDOI

Quantum Thermodynamics

TL;DR: Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit.
Journal ArticleDOI

Fundamental aspects of steady-state conversion of heat to work at the nanoscale

TL;DR: In this paper, the authors introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems, including linear response theory with or without magnetic fields, Landauer scattering theory in the linear response regime and far from equilibrium.
Journal ArticleDOI

Nanoscale heat engine beyond the Carnot limit.

TL;DR: It is shown that the efficiency at maximum power increases with the degree of squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large squeezing parameters.
References
More filters
Journal ArticleDOI

On the Generators of Quantum Dynamical Semigroups

TL;DR: In this paper, the notion of a quantum dynamical semigroup is defined using the concept of a completely positive map and an explicit form of a bounded generator of such a semigroup onB(ℋ) is derived.
Journal ArticleDOI

Reciprocal Relations in Irreversible Processes. II.

TL;DR: In this article, a general reciprocal relation applicable to transport processes such as the conduction of heat and electricity, and diffusion, is derived from the assumption of microscopic reversibility, and certain average products of fluctuations are considered.
Book

Thermodynamics and an Introduction to Thermostatics

H.B. Callen
TL;DR: The Canonical Formalism Statistical Mechanics in the Entropy Representation as discussed by the authors is a generalization of statistical mechanics in the Helmholtz Representation, and it has been applied to general systems.
Book

Thermodynamics and an Introduction to Thermostatistics

TL;DR: The Canonical Formalism Statistical Mechanics in the Entropy Representation as mentioned in this paper is a generalization of statistical mechanics in the Helmholtz Representation, and it has been applied to general systems.
Journal ArticleDOI

Efficiency of a Carnot engine at maximum power output

TL;DR: In this article, the efficiency of a Carnot engine for the case where the power output is limited by the rates of heat transfer to and from the working substance was analyzed, and it was shown that the efficiency at maximum power output was given by the expression η = 1 − (T2/T1)1/2 where T1 and T2 are the respective temperatures of the heat source and heat sink.
Related Papers (5)