scispace - formally typeset
Journal ArticleDOI

Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin

Reads0
Chats0
TLDR
Comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fused mechanism.
Abstract
Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.

read more

Citations
More filters
Journal ArticleDOI

Current Progress of Virus-mimicking Nanocarriers for Drug Delivery.

TL;DR: The early infection machineries of viruses are summarized, including the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infectionMachineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity).
Journal ArticleDOI

Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms.

TL;DR: A model of how influenza proteins promote fusion within interacting membranes is obtained and it is hypothesized that entry by other enveloped viruses may also use sequential processes of acyl tail exposure, followed by membrane curvature and distal leaflet engagement.
Journal ArticleDOI

The Transmembrane Domain Sequence Affects the Structure and Function of the Newcastle Disease Virus Fusion Protein

TL;DR: Results show that the specific sequence of the TM domain of the NDV F protein is important for the conformation of the preactivation form of the ectodomain, the interactions of the protein with HN protein, and fusion activity.
Journal ArticleDOI

Recent advances in computer-aided drug design as applied to anti-influenza drug discovery.

TL;DR: The focus of the review will be anti-influenza drug discovery and how advances in the understanding of viral biology have led to the discovery of novel influenza protein targets.
Journal ArticleDOI

Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt.

TL;DR: It is suggested that phylogenetically divergent H5N1 viruses, which were not antigenically cross-reactive, were co-circulating in Egypt, indicating that there was a problem in using a single influenza virus strain as seed virus to produce influenza virus vaccine in Egypt and providing data for designing more efficacious control strategies in H 5N1-endemic areas.
References
More filters
Journal ArticleDOI

MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures

TL;DR: The MOLSCRIPT program as discussed by the authors produces plots of protein structures using several different kinds of representations, including simple wire models, ball-and-stick models, CPK models and text labels.
Journal ArticleDOI

Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody

TL;DR: The structure reveals a cavity-laden CD4–gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion.
Journal ArticleDOI

Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution.

TL;DR: The haemagglutinin glycoprotein of influenza virus is a trimer comprising two structurally distinct regions: a triple-stranded coiled-coil of α-helices extends 76 Å from the membrane and a globular region of antiparallel β-sheet is positioned on top of this stem.
Journal ArticleDOI

Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution

TL;DR: The X-ray crystal structure of a core synaptic fusion complex containing syntaxin-1A, synaptobrevin-II and SNAP-25B reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins.
PatentDOI

Core structure of GP41 from the HIV envelope glycoprotein

TL;DR: The crystal structure of this complex, composed of the peptides N36 and C34, is a six-helical bundle that shows striking similarity to the low-pH-induced conformation of influenza hemagglutinin and likely represents the core of fusion-active gp41.
Related Papers (5)