scispace - formally typeset
Open AccessProceedings ArticleDOI

Salient Object Detection: A Discriminative Regional Feature Integration Approach

Reads0
Chats0
TLDR
This paper regards saliency map computation as a regression problem, which is based on multi-level image segmentation, and uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the salency map.
Abstract
Salient object detection has been attracting a lot of interest, and recently various heuristic computational models have been designed. In this paper, we regard saliency map computation as a regression problem. Our method, which is based on multi-level image segmentation, uses the supervised learning approach to map the regional feature vector to a saliency score, and finally fuses the saliency scores across multiple levels, yielding the saliency map. The contributions lie in two-fold. One is that we show our approach, which integrates the regional contrast, regional property and regional background ness descriptors together to form the master saliency map, is able to produce superior saliency maps to existing algorithms most of which combine saliency maps heuristically computed from different types of features. The other is that we introduce a new regional feature vector, background ness, to characterize the background, which can be regarded as a counterpart of the objectness descriptor [2]. The performance evaluation on several popular benchmark data sets validates that our approach outperforms existing state-of-the-arts.

read more

Citations
More filters
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Journal ArticleDOI

Salient Object Detection: A Benchmark

TL;DR: It is found that the models designed specifically for salient object detection generally work better than models in closely related areas, which provides a precise definition and suggests an appropriate treatment of this problem that distinguishes it from other problems.
Proceedings ArticleDOI

Saliency Optimization from Robust Background Detection

TL;DR: This work proposes a robust background measure, called boundary connectivity, which characterizes the spatial layout of image regions with respect to image boundaries and is much more robust and presents unique benefits that are absent in previous saliency measures.
Journal ArticleDOI

Deeply Supervised Salient Object Detection with Short Connections

TL;DR: A new saliency method is proposed by introducing short connections to the skip-layer structures within the HED architecture, which produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency, effectiveness, and simplicity over the existing algorithms.
Proceedings ArticleDOI

Saliency detection by multi-context deep learning

TL;DR: This paper proposes a multi-context deep learning framework for salient object detection that employs deep Convolutional Neural Networks to model saliency of objects in images and investigates different pre-training strategies to provide a better initialization for training the deep neural networks.
References
More filters
Proceedings ArticleDOI

Fully convolutional networks for semantic segmentation

TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Journal ArticleDOI

A feature-integration theory of attention

TL;DR: A new hypothesis about the role of focused attention is proposed, which offers a new set of criteria for distinguishing separable from integral features and a new rationale for predicting which tasks will show attention limits and which will not.
Journal ArticleDOI

A model of saliency-based visual attention for rapid scene analysis

TL;DR: In this article, a visual attention system inspired by the behavior and the neuronal architecture of the early primate visual system is presented, where multiscale image features are combined into a single topographical saliency map.

A model of saliency-based visual attention for rapid scene analysis

Laurent Itti
TL;DR: A visual attention system, inspired by the behavior and the neuronal architecture of the early primate visual system, is presented, which breaks down the complex problem of scene understanding by rapidly selecting conspicuous locations to be analyzed in detail.
Journal ArticleDOI

Efficient Graph-Based Image Segmentation

TL;DR: An efficient segmentation algorithm is developed based on a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image and it is shown that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties.
Related Papers (5)