scispace - formally typeset
Journal ArticleDOI

Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review

Kristin M. Rath, +1 more
- 01 Feb 2015 - 
- Vol. 81, Iss: 81, pp 108-123
TLDR
A review of the available research on how salt affects decomposer microbial communities and carbon cycling in soil can be found in this paper, where the authors provide a brief overview and qualification of widely applied methods to assess microorganisms in soil to date.
Abstract
Salinization of soil is recognised as one of the most pressing environmental challenges to resolve for the next century. We here conduct a synoptic review of the available research on how salt affects decomposer microbial communities and carbon (C) cycling in soil. After summarizing known physiological responses of microorganisms to salinity, we provide a brief overview and qualification of a selection of widely applied methods to assess microorganisms in soil to date. The dominant approaches to characterise microbial responses to salt exposure have so far been microbial biomass and respiration measurements. We compile datasets from a selection of studies and find that (1) microbial biomass-carbon (C) per C held in soil organic matter shows no consistent pattern with long-term (field gradients) or short-term (laboratory additions) soil salinity level, and (2) respiration per soil organic C is substantially inhibited by higher salt concentrations in soil, and consistently so for both short-term and long-term salinity levels. Patterns that emerge from extra-cellular enzyme assessments are more difficult to generalize, and appear to vary with the enzyme studied, and its context. Growth based assessments of microbial responses to salinization are largely lacking. Relating the established responses of microbial respiration to that of growth could provide an estimate for how the microbial C-use efficiency would be affected by salt exposure. This would be a valuable predictor for changes in soil C sequestration. A few studies have investigated the connection between microbial tolerance to salt and the soil salinity levels, but so far results have not been conclusive. We predict that more systematic inquiries including comprehensive ranges of soil salinities will substantiate a connection between soil salinity and microbial tolerance to salt. This would confirm that salinity has a direct effect on the composition of microbial communities. While salt has been identified as one of the most powerful environmental factors to structure microbial communities in aquatic environments, no up-to-date sequence based assessments currently exist from soil. Filling this gap should be a research priority. Moreover, linking sequencing based assessments of microbial communities to their tolerance to salt would have the potential to yield biomarker sets of microbial sequences. This could provide predictive power for, e.g., the sensitivity of agricultural soils to salt exposure, and, as such, a useful tool for soil resource management. We conclude that salt exposure has a powerful influence on soil microbial communities and processes. In addition to being one of the most pressing agricultural problems to solve, this influence could also be used as an experimental probe to better understand how microorganisms control the biogeochemistry in soil. (C) 2014 Elsevier Ltd. All rights reserved. (Less)

read more

Citations
More filters
Journal ArticleDOI

The threat of soil salinity: A European scale review

TL;DR: It is concluded that future research in the field of soil Salinisation should be focused on among others carbon dynamics of saline soil, further exploration of remote sensing of soil properties and the harmonization and enrichment of soil salinity maps across Europe within a general context of a soil threat monitoring system to support policies and strategies for the protection of European soils.
Journal ArticleDOI

Salinity Is a Key Determinant for Soil Microbial Communities in a Desert Ecosystem.

TL;DR: The importance of salinity in soil microbial community composition and assembly processes in a desert ecosystem is suggested by a null modeling approach to estimate microbial community assembly processes along a salinity gradient, which found that salinity imposed a strong selection pressure on the microbial community, which resulted in a dominance of deterministic processes.

Global Patterns in Bacterial Diversity

TL;DR: This work reports the most comprehensive analysis of the environmental distribution of bacteria to date, based on 21,752 16S rRNA sequences compiled from 111 studies of diverse physical environments, and finds that sediments are more phylogenetically diverse than any other environment type.
References
More filters
Journal ArticleDOI

A rapid method of total lipid extraction and purification.

TL;DR: The lipid decomposition studies in frozen fish have led to the development of a simple and rapid method for the extraction and purification of lipids from biological materials that has been applied to fish muscle and may easily be adapted to use with other tissues.
Book

The Mineral Nutrition of Higher Plants

M. H. Martin, +1 more
TL;DR: This chapter discusses the relationship between Mineral Nutrition and Plant Diseases and Pests, and the Soil-Root Interface (Rhizosphere) in Relation to Mineral Nutrition.
Book

Mineral Nutrition of Higher Plants

H. Marschner
TL;DR: In this article, the authors discuss the relationship between mineral nutrition and plant diseases and pests, and diagnose deficiency and toxicity of mineral nutrients in leaves and other aerial parts of a plant.
Related Papers (5)