scispace - formally typeset
Open AccessJournal ArticleDOI

Scaling and power density metrics of electromagnetic vibration energy harvesting devices

Reads0
Chats0
TLDR
In this paper, a review of the vibration energy harvesting literature has been undertaken with the goal of establishing scaling laws for experimentally demonstrated harvesting devices based on electromagnetic transduction, and power density metrics are examined with respect to scaling length, mass, frequency and drive acceleration.
Abstract
A review of the vibration energy harvesting literature has been undertaken with the goal of establishing scaling laws for experimentally demonstrated harvesting devices based on electromagnetic transduction. Power density metrics are examined with respect to scaling length, mass, frequency and drive acceleration. Continuous improvements in demonstrated power density of harvesting devices over the past decade are noted. Scaling laws are developed from observations that appear to suggest an upper limit to the power density achievable with current harvesting techniques.

read more

Citations
More filters
Journal ArticleDOI

Energy harvesting in wireless sensor networks: A comprehensive review

TL;DR: A comprehensive taxonomy of the various energy harvesting sources that can be used by WSNs is presented and some of the challenges still need to be addressed to develop cost-effective, efficient, and reliable energy harvesting systems for the WSN environment are identified.
Journal ArticleDOI

A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018)

TL;DR: This paper presents an update to the authors' previous review paper by summarizing the notable developments in the field of piezoelectric energy harvesting through the past decade.
Journal ArticleDOI

A review on performance enhancement techniques for ambient vibration energy harvesters

TL;DR: In this article, the authors review the current techniques that are being employed to enhance the performance of these devices and categorise them into amplification techniques, resonance tuning methods and introducing nonlinear oscillations.
Journal ArticleDOI

Energy Harvesting Research: The Road from Single Source to Multisource.

TL;DR: This is one of the most comprehensive reviews conducted to date, focusing on the entire energy harvesting research scene and providing a guide to seeking deeper and more specific research references and resources from every corner of the scientific community.
References
More filters
Journal ArticleDOI

Kinetics and kinematics for translational motions in microgravity during parabolic flight.

TL;DR: The goal is to combine kinetic and kinematic data to examine translational motions during microgravity adaptations to encourage fine-control motions as these reduce the risk of injury and increase controllability.
Journal ArticleDOI

Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices

TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Journal ArticleDOI

A micro electromagnetic generator for vibration energy harvesting

TL;DR: In this paper, the authors presented a small (component volume 1 cm3, practical volume 1 5 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data.
Journal ArticleDOI

On energy harvesting from ambient vibration

TL;DR: In this article, an elastically mounted magnetic seismic mass moving past a coil, considered previously by several authors, is analyzed in detail. And the overall damping coefficient (part of which is mechanical) is associated with the harvesting and dissipation of energy and also the transfer of energy from the vibrating base into the system.
Journal ArticleDOI

An electromagnetic, vibration-powered generator for intelligent sensor systems

TL;DR: In this article, the design of miniature generators capable of converting ambient vibration energy into electrical energy for use in powering intelligent sensor systems is described and experimental results are described and test results presented.
Related Papers (5)