scispace - formally typeset
Journal ArticleDOI

Self-formed grain boundary healing layer for highly efficient CH 3 NH 3 PbI 3 perovskite solar cells

TLDR
In this article, the grain boundaries in thin-film perovskite solar cells are passedivated by using excess CH3NH3I in the precursor solution, achieving an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%).
Abstract
Perovskite solar cells have attracted significant research efforts due to their remarkable performance, with certified power conversion efficiency now reaching 22%. Solution-processed perovskite thin films are polycrystalline, and grain boundaries are thought to be responsible for causing recombination and trapping of charge carriers. Here we report an effective and reproducible way of treating grain boundaries in CH3NH3PbI3 films deposited by means of a Lewis acid–base adduct approach. We show by high-resolution transmission electron microscopy lattice images that adding 6 mol% excess CH3NH3I to the precursor solution resulted in a CH3NH3I layer forming at the grain boundaries. This layer is responsible for suppressing non-radiative recombination and improving hole and electron extraction at the grain boundaries by forming highly ionic-conducting pathways. We report an average power conversion efficiency of 20.1% over 50 cells (best cell at 20.4%) together with significantly reduced current–voltage hysteresis achieved by this grain boundary healing process. The grain boundaries in thin-film perovskite solar cells are responsible for non-radiative carrier recombination, which is deleterious for the optoelectronic performance. Son et al. show how to passivate the grain boundaries by using excess CH3NH3I in the precursor solution, achieving efficiencies of 20.4%.

read more

Citations
More filters
Journal ArticleDOI

Efficient and stable solution-processed planar perovskite solar cells via contact passivation.

TL;DR: A contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells is reported.
Journal ArticleDOI

A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells

TL;DR: Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Journal ArticleDOI

Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Journal ArticleDOI

Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations

TL;DR: Zheng et al. as discussed by the authors showed that quaternary ammonium halides can effectively passivate ionic defects in several different types of hybrid perovskite with their negative-and positive-charged components.
Journal ArticleDOI

High-Efficiency Perovskite Solar Cells.

TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

Efficient planar heterojunction perovskite solar cells by vapour deposition

TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Related Papers (5)