scispace - formally typeset
Journal ArticleDOI

A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells

TLDR
Jeon et al. as discussed by the authors synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable perovskite solar cells.
Abstract
Perovskite solar cells (PSCs) require both high efficiency and good long-term stability if they are to be commercialized. It is crucial to finely optimize the energy level matching between the perovskites and hole-transporting materials to achieve better performance. Here, we synthesize a fluorene-terminated hole-transporting material with a fine-tuned energy level and a high glass transition temperature to ensure highly efficient and thermally stable PSCs. We use this material to fabricate photovoltaic devices with 23.2% efficiency (under reverse scanning) with a steady-state efficiency of 22.85% for small-area (~0.094 cm2) cells and 21.7% efficiency (under reverse scanning) for large-area (~1 cm2) cells. We also achieve certified efficiencies of 22.6% (small-area cells, ~0.094 cm2) and 20.9% (large-area, ~1 cm2). The resultant device shows better thermal stability than the device with spiro-OMeTAD, maintaining almost 95% of its initial performance for more than 500 h after thermal annealing at 60 °C. Interfacial losses between device layers play a key role in determining characteristics of solar cells. Jeon et al. address this in perovskite solar cells by synthesizing a hole-transporting layer that is better matched to the surrounding layers, and show high-efficiency and high-stability devices.

read more

Citations
More filters
Journal ArticleDOI

Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Journal ArticleDOI

High-Efficiency Perovskite Solar Cells.

TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Journal ArticleDOI

Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss.

TL;DR: Two fluorinated isomeric analogs of the well-known hole-transporting material Spiro-OMeTAD are developed and used as HTMs in PSCs and feature high efficiency, open-circuit voltage, and stability of perovskite solar cells.
Journal ArticleDOI

Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics.

TL;DR: Recommendations are made on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.
Journal ArticleDOI

Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18.

TL;DR: High crystalline β-CsPbI3 films are obtained with an extended spectral response and enhanced phase stability and made from the treated material have highly reproducible and stable efficiencies reaching 18.4% under 45 ± 5°C ambient conditions.
References
More filters
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal Article

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3

TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Related Papers (5)