scispace - formally typeset
Open AccessJournal ArticleDOI

Separable dual-space Gaussian pseudopotentials

Reads0
Chats0
TLDR
The pseudopotential is of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set and is separable and has optimal decay properties in both real and Fourier space.
Abstract
We present pseudopotential coefficients for the first two rows of the Periodic Table. The pseudopotential is of an analytic form that gives optimal efficiency in numerical calculations using plane waves as a basis set. At most, seven coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudopotential to a wave function can be done efficiently on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space, since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudopotentials by extensive atomic and molecular test calculations. \textcopyright{} 1996 The American Physical Society.

read more

Citations
More filters
Journal ArticleDOI

Alchemical Variations of Intermolecular Energies According to Molecular Grand-Canonical Ensemble Density Functional Theory.

TL;DR: This work investigates the interaction of a fixed binding target, formic acid, with a restricted chemical space, corresponding to an isoelectronic 10-proton system which includes molecules such as CH4, NH3, H2O, and HF.
Journal ArticleDOI

Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods

TL;DR: In this paper, a ring-polymer contraction technique is used to reduce the overhead of modeling nuclear quantum effects. But the approach is not suitable for high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.
Journal ArticleDOI

Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics

TL;DR: In this article, the structure and electronic properties of gold nanoparticles (Au 12, Au 13, Au 14, Au 15, Au 20, Au 34, and Au 55) have been investigated using Born-Oppenheimer ab initio molecular dynamic simulations of 50 to 80 ps in order to have an insight in the recently proposed fluxional character of nanosized gold.
References
More filters
Book

Density-functional theory of atoms and molecules

TL;DR: In this paper, a review of current studies in density functional theory and density matrix functional theory is presented, with special attention to the possible applications within chemistry, including the concept of an atom in a molecule, calculation of electronegativities from the Xα method, pressure, Gibbs-Duhem equation, Maxwell relations and stability conditions.
Related Papers (5)